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Abstract

This paper analyzes a semiparametric model of network formation in the presence of un-
observed agent-specific heterogeneity. Its objective is to identify and estimate the preference
parameters associated with observed homophily when the distribution of the unobserved factors
is not parametrically specified. This paper offers two main contributions to the literature on
network formation. First, it establishes a new point identification result for the vector of param-
eters that relies on the existence of a special regressor. The identification proof is constructive
and characterizes a closed form for the parameter of interest. Second, it introduces a two-step
semiparametric estimator with a first-step kernel estimator. This estimator is consistent and
has a limiting normal distribution under sparse network asymptotics. Monte Carlo experiments
demonstrate that the estimator performs well in finite samples. Finally, the methodology is im-
plemented to estimate the homophily parameters in a friendship network using the Add Health
dataset.
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1 Introduction

Individuals tend to connect with other individuals with whom they share similar observed at-

tributes. This observation is known as homophily and is one of the main objects of study in the

literature on social networks (McPherson et al. 2001). However, few have investigated the role of ho-

mophily when individuals also have preferences for unobserved attributes. Proper policy evaluation

requires us to distinguish between the contributions of observed and unobserved attributes since

they have different policy implications. For example, high-school students might form friendships

based on similarities in their observed socioeconomic attributes just as well as on their preferences

for unobserved social skills, such as extraversion. While socioeconomic attributes can be influenced

by a given policy intervention, preferences for unobserved social skills are harder to change via

targeted policies. In this paper, I study the identification and estimation of the preference param-

eters associated with the observed attributes in a model of network formation that accounts for

valuations on unobserved agent-specific heterogeneity. In particular, I develop identification and

estimation strategies that do not depend on distributional assumptions of the unobserved random

components.

I consider a semiparametric model of network formation with unobserved agent-specific hetero-

geneity. Specifically, two distinct agents, i and j, form an undirected link according to the following

network formation equation

Dij = 1
[
vij +X>ij θ0 +Ai +Aj − Uij ≥ 0

]
, (1)

where 1 [·] is the indicator function, Dij is a binary outcome variable that takes a value of 1 if agents

i and j form a link and 0 otherwise, vij and Xij are pair-specific observed attributes, θ0 ∈ <dθ is a

vector of unknown parameters, Ai and Aj are agent-specific unobserved random variables, and Uij

is a link-specific unobserved disturbance term.

Intuitively, Eq. (1) says that an undirected link between two agents is formed if the net benefit

of the link between agents i and j is non-negative. The components in Eq. (1) can be classified into

three different categories. The first class, given by the linear index vij + X>ij θ0, captures agents’

preferences for establishing a link based on observed characteristics. For instance, this component

is known as homophily on observed attributes when it captures assortative matching based on

sharing similar traits. The second class, formed by the factors Ai and Aj , captures preferences

for establishing connections based on agent-specific unobserved attributes. These factors account

for unobserved heterogeneity across the individuals’ decisions and challenge the identification of

θ0 because of their correlation with the observed attributes. Finally, the third category comprises

a link-specific disturbance term Uij that captures the exogenous factors influencing the decision

to form a specific link. The components in the last two categories are known to the agents but

unobserved to the researcher.

This paper offers two main contributions to the literature on network formation. First, it
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proposes a new point identification strategy to recover the vector of coefficients in a semiparametric

network formation model with unobserved agent-specific factors. The point identification result

relies on the presence of a special regressor. A special regressor is an observed covariate that

satisfies two key properties: (i) it is conditionally independent of the unobserved attributes, and

(ii) it is a continuous variable with a large support. The methodology of the special regressor has

been employed in a wide variety of micro-econometric models, but to the best of my knowledge,

this paper represents the first generalization of the special regressor to the analysis of a network

formation model (Lewbel 1998, and Lewbel 2014 for a survey on the special regressor). Notably,

the identification strategy developed in this paper is constructive and yields a closed form for the

parameters of interest. In Section 3, I describe in detail the defining properties of the special

regressor and provide sufficient conditions to point identify the vector of coefficients.

As a second contribution, this paper introduces a two-step semiparametric estimator for the

vector of coefficients θ0. This estimator has a least-squares closed form and is computationally

tractable even in large networks. The estimator uses a first-step kernel estimator to inversely

weight the linking decisions Dij by the conditional density of the special regressor. The second

step is a linear regression of the pairwise variation of the inversely weighted linking decisions on

the pairwise variation of the observed attributes across all the distinct groups of four agents in

the network, also known as tetrads. In Section 4, I provide sufficient conditions that ensure the

estimator is consistent and has a limiting normal distribution under sparse network asymptotics. I

perform inference in a setting where only one large network is observed in the data. In Section 5,

I use Monte Carlo simulations to show that the method performs well in finite samples and under

different degrees of sparsity.

Finally, in Section 6, I illustrate the performance of this methodology in an empirical application.

I use the National Longitudinal Study of Adolescent Health (Add Health) to study the factors

driving the formation of a friendship network among high-school students (Harris et al. 2009). As

a special regressor, I consider students’ birth weight, in deviation from the sample mean. Based

on the established relationship between birth weight and individuals’ personality traits (Almond

et al. 2018), I discuss in detail why, conditional on a rich set of covariates, birth weight is likely to

represent a valid special regressor.1 I estimate the vector of preference parameters and find evidence

for homophily on several socio-demographic characteristics and risky behaviors. The results are

intuitive and expand on the previous findings described by the literature on the formation of

friendship networks by estimating a dyadic network model with agent-specific heterogeneity (cf.

Goldsmith-Pinkham and Imbens 2013; Miyauchi 2016; Christakis et al. 2020).

In the rest of this section, I relate my results to the existing literature. This paper is closely re-

lated to the literature that studies dyadic network formation models with unobserved heterogeneity

(see, e.g., Graham 2017, and Graham 2020 for an additional survey).2 Within this literature, the

1Specifically, the estimation method controls for a wide range of socio-demographic, economic, health, and edu-
cational factors of both the students and their parents.

2Another branch of the literature on network formation specifies the network as the equilibrium outcome of a
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papers by Charbonneau (2017); Jochmans (2017, 2018); Dzemski (2019); Yan et al. (2019) have

analyzed the formation of a directed network. Their methodologies differ substantially from the

one proposed here since they follow a parametric conditional likelihood approach. In contrast, I

study the formation of an undirected network and follow a semiparametric approach.3

This paper builds on the seminal work of Graham (2017), which aims to detect preferences for

homophily in an undirected network model with agent heterogeneity. Graham (2017) introduced

the Tetrad Logit estimator with identification and asymptotic properties that rely on Uij following

a logistic distribution. The point identification and estimation results presented here relax this

requirement and can be applied to settings where the distribution of Uij is not parametrically

specified. Hence, this paper provides a feasible alternative to the Tetrad Logit when the assumption

on the logistic distribution is unlikely to hold.

Since the initial draft of this paper was circulated, recent studies have appeared analyzing

semiparametric or nonparametric variations of a dyadic network formation model with unobserved

heterogeneity; these include the studies by Toth (2017); Gao (2020); and Zeleneev (2020). Similarly

to this paper, Toth (2017) studies the identification of a dyadic network formation model in which

the distribution of Uij is unknown. However, he uses a different strategy than the one developed in

this paper. In particular, he implements an identification strategy similar to the maximum rank by

Han (1987). His methodology assumes that each component in the vector of observed attributes Xi

and Ai are continuously distributed. This restriction is not required by the method developed in

this paper. Relaxing this restriction is empirically relevant as it is common to control for continuous

and discrete attributes when studying social networks.

Gao (2020) studies the identification of a dyadic network model with an unknown and strictly

increasing cumulative distribution for Uij .
4 He introduces an in-fill and out-expansion that allows

him to identify the homophily function. His identification strategy relies on normalizing the loca-

tion of two different quantiles of the distribution of Uij and using the strictly increasing property of

this distribution. In contrast, the methodology presented in this paper relies on an alternative nor-

malization that sets the conditional mean of Uij equal to zero and does not restrict this distribution

to be strictly increasing.

Finally, Zeleneev (2020) studies the identification and estimation of a dyadic network formation

model with a nonparametric structure of the unobserved heterogeneity. His identification strategy

generalizes Auerbach (2022) approach to introduce a pseudo-distance between a pair of agents i

and j, which is instrumental in recovering groups of agents with the same levels of agent-specific

unobserved heterogeneity. After conditioning on the matched agents with similar unobserved het-

strategic game of link formation (de Paula 2020). The identification and estimation methods used in that literature
differ substantially from the ones proposed here.

3Related to this literature, Chernozhukov et al. (2020) estimate quantile treatment effects in a two-way fixed
effects model when the distribution of Uij is known. Ma et al. (2020) uses a multi-step estimation to detect the latent
communities in a dyadic network formation model with logistic error terms.

4Gao (2020) considers extensions on the functional form of the unobserved heterogeneity (e.g., Gao 2020 and
Zeleneev 2020). Those extensions are beyond the scope of this paper and left for future research.
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erogeneity, the residual variation in the observed characteristics is used to identify the vector of

coefficients. In this paper, a direct approach is used instead, where the vector of coefficients is iden-

tified without relying on recovering first the groups of agents with the same levels of agent-specific

heterogeneity.

In contrast to these three studies, the identification strategy proposed here is based on the

presence of a special regressor. The vector of parameters is point identified from the information

in the pairwise difference of the linking decisions, inversely weighted by the conditional density

of the special regressor given the observed attributes. This transformation is not nested in any

existing work. Consequently, this result represents a novel contribution to the literature on the

formation of networks. The main advantage of the special regressor methodology is that, after

inversely weighting the linking decisions, the factors capturing the agent-specific heterogeneity in

the network formation equation are partialled out by a pairwise difference strategy. As a result,

θ0 is recovered in closed form without the need to sort the individual types at an initial stage.

Moreover, this unique identification strategy yields a two-step semiparametric estimator for θ0 with

a least-squares analytic form and known limiting distribution under sparse network asymptotics.

In contrast, Toth (2017) and Zeleneev (2020) recover the vector of parameters at a non-parametric

rate due to the initial sorting of the individual indices embedded in their methodologies.5

Finally, this paper also contributes to a broad econometrics literature that uses the special

regressor method to identify micro-econometric models. Some applications include binary and

multinomial choice models, nonlinear panel data models with fixed effects, valuation models, and

static games with incomplete information (see, e.g., Lewbel 2014, and references therein). This

paper represents the first generalization of the special regressor to network data. The network

formation model in Eq. (1) is a nonlinear model with multiple unobserved heterogeneity and

dyadic dependence. This setting is not contained in any model of the existing literature. Thus, the

methodology proposed in this paper represents a novel contribution to the literature that has used

the special regressor in micro-econometric models.

The rest of the paper is organized as follows. Section 2 introduces the setup of the network

formation model. Section 3 provides the identification result for the vector of parameters. Section 4

introduces the semiparametric estimator and proves the main asymptotic results. Section 5 reports

simulation evidence. Section 6 describes an empirical application, and Section 7 concludes. The

appendices collect the proofs, simulation tables, and information on the Add Health dataset.

2 Network Formation Model

A network is an ordered pair (Nn,Dn) formed by a set of n agents denoted by Nn = {1, · · · , n} and

an n×n adjacency matrix Dn, which represents the links between the agents in Nn. Let Dij denote

the (i, j)th entry of the matrix Dn. I assume the network is undirected and unweighted. A network

5No inference method is provided for the identification results in Gao (2020).
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is undirected if the adjacency matrix is symmetric, i.e., Dij = Dji. A network is unweighted if any

(i, j)th entry of the adjacency matrix takes one of two values, where these values are normalized

to be 0 and 1. In other words, Dij ∈ {0, 1}, where Dij = 1 if the agents i and j share a link and

Dij = 0 otherwise. Moreover, I normalize the value of self-ties to zero, i.e., Dii = 0 for any agent i.

Each agent i ∈ Nn is endowed with a dθ+1-dimensional vector of observed attributes (vi, X
>
i )>

and an unobserved scalar component term Ai. The unobserved term Uij captures exogenous

stochastic factors that influence the (i, j)th pair-specific decision to establish a link between these

agents.

For any distinct agents i and j, let Xij = gx(Xij) be a dθ × 1 random vector of pair-specific

attributes, where gx : <dθ × <dθ 7→ <dθ is a vector-valued function that is known, nonlinear, and

symmetric. Similarly, let vij = gv(vi, vj) with gv : <×< 7→ <. The functions gx and gv are assumed

to be symmetric on their terms due to the undirected nature of the network. The specification of gx

and gv are chosen by the researcher and vary according to the empirical application. For instance,

these functions can be specified to capture preferences for assortative matching. Suppose that Xi

represents agent i’s gender, then Xij = 1 [Xi = Xj ] accounts for homophily on gender.

Using this notation, the formation of an undirected link between two distinct agents i and j in

Nn is represented by Eq. (1). The coefficient associated with vij has been normalized to 1. Scale

normalizations are standard in the binary choice literature and are necessary for point identification

when the distribution of the error term is not parametrized (Powell 1994). The main parameter of

interest is θ0.6

2.1 Notation

For any pair of agents i, j ∈ Nn, let Zi = {vi, Xi, Ai} and Zij = {vi, vj , Xi, Xj , Ai, Aj}. The

sequence of pair-specific observed attributes is denoted by Xn = {Xij : i, j ∈ Nn}. Similarly, let

Zn = {Zij : i, j ∈ Nn} denote the sequence of observed and unobserved attributes for all individuals

in the network. Additionally, let X−ij = {Xkl : k, l 6= i, j} and Z−ij = {Zkl : k, l 6= i, j}.

The identification and estimation strategies introduced in Sections 3 and 4 use the information

contained in subnetworks formed by the 4-tuples {i, j, k, l} of individuals, known as tetrads. The

following notation describes variables at the tetrad level. Given a network of size n, there is a total

of mn =
(
n
4

)
tetrads with distinct indices i, j, k, l ∈ Nn. Let σ be a function that maps these tetrads

to the index set Nmn = {1, · · · ,mn}. Thus, each tetrad with distinct indices {i, j, k, l} corresponds

to a unique value σ ({i, j, k, l}) ∈ Nmn . I will denote the subnetwork formed by the tetrad {i, j, k, l}
by σ ({i, j, k, l}) ∈ Nmn (cf. Jochmans 2018).

6In Appendix C, I discuss how this network formation model can be derived as a stable outcome from a static
game with transferable utilities.
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3 Identification

This section introduces the identification result for the semiparametric network formation model

with unobserved agent-specific factors. This result relies on the presence of a special regressor. The

following assumptions specify the underlying framework that is used to show point identification

of θ0 in the network formation model.

Assumption 3.1 (Sampling). (i) {Zi}ni=1 is i.i.d. across i ∈ Nn. (ii) {Uij | Zn}i 6=j is i.i.d. across

i, j ∈ Nn (iii) For any i, j ∈ Nn, Uij ⊥⊥Z−ij | Zij. (iv) vij ⊥ X−ij | Xij.

Assumption 3.1 describes the sampling process. Condition (i) specifies that individuals are

drawn independently from an identical distribution. This condition is widely used to describe

network data (see, e.g., Graham 2017; Jochmans 2018; and Auerbach 2022). Condition (ii) states

that, conditional on Zn, the link-specific disturbance terms {Uij}i 6=j are independent across dyads

{i, j} and drawn from the same distribution. Furthermore, Condition (iii) requires that conditional

on the dyad-specific attributes Zij , the link-specific disturbance term Uij is independent of any

observed or unobserved feature in Z−ij . Condition (iv) states that the dyad-level component Xij

controls for any dependence between vij and the vector of observed attributes Xn. This condition

is design-specific and holds under different empirically interesting designs, for example, when both

vij = gv(vi, vj) and Xij = gx(Xi, Xj) account for assortative matching. Assumption 3.1 ensures

that each of the linking decisions is conditionally independent across dyads.

Notice that Assumption 3.1 allows for heteroskedasticity of a general form in the distribution

of Uij . Moreover, it allows for flexible dependence between the unobserved agent-specific factors

and the observed attributes. In other words, Assumption 3.1 does not restrict the joint distribution

of Zij . Assumption 3.1 is commonly used in semiparametric nonlinear panel data models, for

example in Arellano and Honoré (2001). In network formation models, full stochastic independence

Uij ⊥ Zn,An is usually imposed as in Leung (2015); Graham (2017); Toth (2017); and Gao (2020).

Arbitrary heteroskedasticity is also considered in Zeleneev (2020).

Assumption 3.2 (Exclusion). For any distinct i, j ∈ Nn, let eij = Ai + Aj − Uij. Denote

by Fe|X (eij | Xn) and Se|X(eij | Xn) the conditional CDF and support of eij given Xn. (i)

E [eij | Xn] <∞. (ii) eij ⊥ vij | Xij.

Assumption 3.2 represents an exclusion restriction, and it entails that the regressor vij is con-

ditionally independent of eij given the observed attributes Xij . In other words, after controlling

for Xij , the regressor vij is statistically independent from the unobserved attributes in eij . This is

one of the main defining properties of the special regressor in the sense of Lewbel (1998, 2000).

Assumption 3.3 (Large Support). For any distinct i, j ∈ Nn, the following holds: (i) The con-

ditional distribution of vij given Xij is absolutely continuous with PDF given by fv|X(vij | Xij)

and support given by Sv|X(Xij) = [v(Xij), v(Xij)], with −∞ ≤ v(Xij) ≤ 0 ≤ v(Xij) ≤ ∞. (ii)
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The density fv|x(vij | Xij) is bounded away from zero. (iii) Conditional on Xij, the support of

−
(
X>ij θ0 + eij

)
is a subset of Sv|X(Xij).

Assumption 3.3 is a large support condition, and it ensures that, conditional on Xij , vij has a

density function fv|X(vij | Xij) on Sv|X(Xij). Furthermore, it requires that, given Xij , the support

of −(X ′ijθ0 +eij) is contained in Sv|X(Xij). Notice that Assumption 3.3 does not require vij | Xij to

have full support on the real line. Hence, the point identification result introduced in this section

is general enough to include both: the full support case and the bounded support case, as long as

Condition (ii) holds. Moreover, observe that Assumption 3.3 leaves unrestricted the distribution of

the observed attributes Xij . Hence, it is possible to control for discrete and continuous covariates

in Xij , which is desirable in an empirical application. Together, Assumptions 3.2 and 3.3 imply

that vij is a special regressor.

The network formation model specified by Eq. (1) and Assumptions 3.1-3.3 represent, to the

best of my knowledge, the first generalization of the special regressor to analyze network data.

The following theorem formalizes the point identification result for θ0. For any i, j ∈ Nn,

consider the next transformation of the pair-specific linking decision Dij :

D∗ij ≡
(
Dij − 1 [vij > 0]

fv|x(vij | Xij)

)
. (2)

This transformation is instrumental in shifting the scale and location of the conditional expectation

E
[
D∗ij | Xn

]
as described in Lemma 1. Also, for any tetrad σ({i, j, k, l}) ∈ Nmn , let

G∗σ ≡ (D∗ik −D∗il)− (D∗jk −D∗jl)

Wσ ≡ (Xik −Xil)− (X∗jk −D∗jl).

The variableG∗σ denotes the pairwise variation of
{
D∗ik, D

∗
il, D

∗
jk, D

∗
jl

}
, which represent the inversely-

weighted linking decisions. While, Wσ denotes the pairwise variation of {Xik, Xil, Xjk, Xjl}.

The identification and estimation of θ0 will make use of those contributing tetrads σ ∈ Nmn for

which G∗σ 6= 0. To this end, for any σ({i, j, k, l}) ∈ Nmn , let ωσ ≡ 1 [G∗σ 6= 0]. The total number of

contributing tetrads is given by

m∗n ≡
∑

σ∈Nmn

ωσ,

and the expected share of contributing tetrads is

ρn ≡
1

mn

∑
σ∈Nmn

Pr [ωσ = 1] . (3)

Assumption 3.4. For any distinct i, j ∈ Nn, the following holds: (i) E [Uij | Xn] = 0. (ii) The
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matrix

Γ0 ≡ lim
n→∞

1

E [m∗n]

∑
σ∈Nmn

E
[
WσW

>
σ

]
is finite and nonsingular.

Condition (i) of Assumption 3.4 normalizes the conditional mean of the link-specific disturbance

term Uij to be equal zero given Xn. Condition (ii) of Assumption 3.4 is a full rank condition on

the pairwise variation of the observed attributes E
[
WσW

>
σ

]
, which is scaled by the expected share

of contributing tetrads. This condition ensures that θ0 is point identified.

Lemma 1. If Assumptions 3.1-3.4 hold in Eq. (1), then for any distinct i, j ∈ Nn

E
[
D∗ij | Xn

]
= X>ij θ0 + E [Ai +Aj | Xn] .

Proof. See Appendix A.1.

Lemma 1 conveys two main insights. First, it shows that the conditional expectation of the

inversely-weighted linking decision D∗ij given Xn is a linear function of the unobserved term

E[Ai + Aj | Xn] and the linear index term X>ij θ0. Second, the within-individual i difference of

the transformed linking decisions follows a partially linear structure (cf. Robinson 1988). That

is, E[D∗ik − D∗il | Xn] = (Xik − Xil)
>θ0 + E [Ak −Al | Xn] for any i ∈ Nn with i 6= k, l. The

component E [Ak −Al | Xn] represents a nuisance parameter that is a common element across the

within-individual i variations with i 6= k, l. Hence, point identification of θ0 will follow from the

pairwise variation of the weighted linking decisions G∗σ, which will differentiate out the nuisance

parameter.

Theorem 3.1. If Assumptions 3.1-3.4 hold in Eq. (1), then for any σ ∈ Nmn

E [WσG
∗
σ] = E

[
WσW

>
σ

]
θ0,

and thus

θ0 = Γ−1
0 ×Ψ0, (4)

where

Ψ0 ≡ lim
n→∞

1

E [m∗n]

∑
σ∈Nmn

E [WσG
∗
σ] .

Proof. See Appendix A.1.
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Theorem 3.1 demonstrates that θ0 is point identified using the information contained in the

joint distribution of the tetrads {G∗σ,Wσ}σ∈Nmn
. Moreover, the identification of θ0 is constructive

and yields a least-squares analytic form for the parameter of interest. This least-squares structure

will be the foundation for the semiparametric estimator introduced in Section 4.

Remark 1 (Partially-linear regression). Although the within-individual i variation follows a par-

tially linear structure, note that the identification of θ0 does not require additional exclusion restric-

tions, as it is often imposed in partially linear models (cf. Robinson 1988). In contrast, the full

rank condition in Assumption 3.4 is sufficient for the identification result.

Remark 2 (Individual-specific attributes). Unlike the case in panel data models with fixed effects,

notice that this strategy can account for individual-specific attributes in Xi. Thus, this methodology

overcomes the impossibility of estimating time-invariant characteristics in panel models with fixed

effects (cf. Honoré and Lewbel 2002). This result is a consequence of defining the dyad-specific

attributes Xij as a nonlinear function of (Xi, Xj) and represents an empirically relevant property

since when studying social networks it is common to control for individual-specific attributes, such

as gender and ethnicity.

Finally, given the results in Lemma 1 and Theorem 3.1, notice that the average contribution of

the unobserved agent-specific factors to forming a link is identified.

Corollary 1. If Assumptions 3.1-3.4 hold in Eq. (1), then E [Ai +Aj ] = E
[
D∗ij

]
−E [Xij ]

> θ0 for

any i and j in Nn.

4 Inference

This section introduces a semiparametric estimator for θ0 based on the point identification result.

The estimator for θ0, denoted by θ̂n, is a two-step estimator with a nonparametric estimate of the

conditional distribution fv|x(vij | Xij). Below, I discuss sufficient conditions to derive the large

sample properties of θ̂n. Theorem 4.1 proves that θ̂n is a consistent estimator for θ0. Theorem 4.2

shows that the limiting distribution of θ̂n is normal.

The estimator for θ0 is defined as the sample analogue of Eq. (4) and represents the regression

coefficient in the regression of G∗σ on Wσ across all distinct tetrads σ ∈ Nmn . Given that the inverse

of fv|x(vij | Xij) is used as a weight in the definition of Ψ0, a trimming sequence is used to avoid

boundary effects due to the first-step estimation of fv|x(vij | Xij). Let Iτ (vij | Xij) denote this

trimming sequence with trimming parameter given by τn.

Recall that G∗σ is defined as the pairwise variation across the inversely-weighted linking decisions

for a given tetrad σ ∈ Nmn . I extend this notation to define the pairwise variation of the trimmed
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network links given the parameter τn as follows:

G∗σ,τ ≡
(
D∗ik,τ −D∗il,τ

)
−
(
D∗jk,τ −D∗jl,τ

)
Ĝ∗σ,τ ≡

(
D̂∗ik,τ − D̂∗il,τ

)
−
(
D̂∗jk,τ − D̂∗jl,τ

)
,

where, for any distinct i and j in Nn

D∗ij,τ ≡ fv|x(vij | Xij)
−1 (Dij − 1 [vij > 0]) Iτ (vij | Xij)

D̂∗ij,τ ≡ f̂v|x(vij | Xij)
−1 (Dij − 1 [vij > 0]) Iτ (vij | Xij).

Here, f̂v|x(vij | Xij) denotes the kernel estimator of the true conditional density function of vij

given Xij , denoted by fv|x(vij | Xij). Thus, G∗σ,τ denotes the pairwise variation of the trimmed

network links, assuming that the conditional distribution of the special regressor given the observed

attributes is known. Conversely, Ĝ∗σ,τ denotes the pairwise variation of the trimmed network links

when fv|x(vij | Xij) is replaced by a first-stage kernel estimator f̂v|x(vij | Xij).

The trimming sequence Iτ (vij | Xij) is a function of the conditional distribution of vij given Xij ,

and it converges to 1 as the trimming parameter τn → 0 when n → ∞. Assumption 4.4 describes

the conditions imposed on τn (see e.g., Honoré and Lewbel 2002 and Khan and Tamer 2010).

To ease the exposition, I will denote Iτ,ij = Iτ (vij | Xij), fvx,ij = fvx(vij , Xij), and fx,ij =

fx(Xij). Using this notation, the semiparametric estimator for θ0 is defined as

θ̂n ≡ Γ̂−1
n × Ψ̂n,τ , (5)

where

Γ̂n ≡
1

m∗n

∑
σ∈Nmn

WσW
>
σ

Ψ̂n,τ ≡
1

m∗n

∑
σ∈Nmn

WσĜ
∗
σ,τ .

The first-stage kernel estimator f̂v|x(vij | Xij) is defined as the ratio of the kernel estimators f̂vx,ij

and f̂x,ij with

f̂vx(v12, x12) =
1

n(n− 1)

n∑
l1=1

∑
l2 6=l1

Kvx,h [vl1l2 − v12, Xl1l2 − x12] (6)

f̂x(x12) =
1

n(n− 1)

n∑
l1=1

∑
l2 6=l1

Kx,h [Xl1l2 − x12] . (7)
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The kernels Kvx,h and Kx,h are defined as

Kvx,h [vl1l2 − v12, Xl1l2 − x12] ≡ hdθ+1
n κvx

[
vl1l2 − v12

hn
,
Xl1l2 − x12

hn

]
Kx,h [Xl1l2 − x12] ≡ hdθ+1

n κx

[
Xl1l2 − x12

hn

]
.

where hn denotes a bandwidth parameter. Assumption 4.3 below describes the conditions imposed

on the kernel functions κvx and κx, and bandwidth parameter hn.

The estimator θ̂n in Eq. (5) offers a novel contribution to the literature of dyadic network

formation models with agent heterogeneity. In particular, it constitutes the first semiparametric

methodology to conduct valid inference on the vector of homophily parameters when a special

regressor is available and under different degrees of sparsity in the network. As an appealing

property, the estimator θ̂n is computationally simple to calculate as it has a least-squares analytical

form with an initial kernel density estimator.

The structure of the estimator is related to the work of Honoré and Lewbel (2002) and Graham

(2017); however, the asymptotic theory presented here expands the existing literature. In particu-

lar, the theory in Honoré and Lewbel (2002) is intended for short panels, and thus, it is not suitable

for network data with dyadic dependence. In contrast, the asymptotic results developed in this

paper use higher order U-statistics, Hájek projections and CLTs that are tailored to unpack the

conditional independence structure in dyadic data that is described by Assumption 3.1. Conversely,

the estimator in Graham (2017) is a conditional maximum likelihood estimator of a logistic dyadic

regression, which does not involve the non-parametric estimation of a density function. In contrast,

θ̂n is instead a two-step semiparametric estimator with a least-squares analytic form. The asymp-

totic theory presented here is developed to account for the effect that the non-parametric estimation

of fv|x(vij | Xij) has on the influence function of θ̂n. Moreover, as the density fv|x(vij | Xij) is used

as an inverse weight, a trimming approach is implemented to derive the asymptotic results.7

The following technical conditions are needed to prove Theorems 4.1 and 4.2. For simplicity,

the theorems are stated assuming that all of the elements of Xij are continuously distributed.

However, the results can be extended to include discretely distributed variables by applying the

density estimator separately to each discrete data cell.

Assumption 4.1 (Compact Support). (i) θ0 ∈ int (Θ), with Θ a compact subset of <dθ . (ii) For

any σ ∈ Nmn, the support of Wσ is W, a compact subset of <dθ , and E | (Wr,σWs,σ)2 |<∞ for any

r, s = 1, · · · , dθ, where Wr,σ denotes the rth entry of Wσ.

Condition (i) of Assumption 4.1 is standard in the context of semiparametric estimation (Powell

1994). Assumption 4.1 ensures that W>σ θ0 has bounded contribution to the pairwise regression

of G∗σ,τ on Wσ. This condition is not essential for the main results but simplifies the proof of

7The nonparametric estimation of density functions with dyadic data is an important topic that has attracted
recent attention, for example, in Graham et al. (2019, 2021).
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the asymptotic distribution of the semiparametric estimator. Alternatively, Condition (ii) can be

relaxed by requiring that a sufficiently high-order moment of Wσ is finite. Assumption 4.1 has been

used in Graham (2017) (cf. Jochmans 2018).

Assumption 4.2 (Density). For any i, j ∈ Nn, denote the probability density functions of the co-

variates Xij and (vij , Xij) by fx(Xij) and fvx(vij , Xij), with supports given by Sx and Svx. Suppose

the following holds.

(i) 0 < Bx ≤ infx12∈Sx fx(x12) < supx12∈Sx fx(x12) ≤ Bx <∞ and

0 < Bvx ≤ inf
(v12,x12)∈Svx

fvx(v12, x12) < sup
(v12,x12)∈Svx

fvx(v12, x12) ≤ Bvx <∞.

(ii) For some δ > dθ + 1, fx(x12) is δ-times differentiable with differential operator

∇λ =
∂|λ|

∂λ1x12,1 · · · ∂λdθx12,dθ

where λ = (λ1, · · · , λdθ) ∈ <dθ and | λ |= λ1 + · · ·+λdθ . The derivative ∇λfx(x12) is bounded,

max
0≤|λ|≤δ

sup
x12∈Sx

| ∇λfx(x12) |≤ Dx.

The same conditions hold for fvx(vij , xij) with differential operator ∇λ̃ with λ̃ ∈ <dθ+1 and deriva-

tives bounded by Dvx.

Assumption 4.2 ensures that the densities fx,ij and fvx,ij are continuous and δ-times differen-

tiable. This assumption is standard in the literature of density estimation, for example, in Ahn

and Powell (1993), Hansen (2008), and Graham et al. (2021).

Assumption 4.3 (Kernel). The kernel function κx(x) : <dθ 7→ < and bandwidth parameter hn

satisfy the following conditions.

(i) The kernel is symmetric around zero, κx(x) = κx(−x).

(ii) κx(x) = 0 for all x outside a convex bounded subset of Sx. This subset has a nonempty

interior with 0 as an interior point.

(iii) The kernel is bounded, supx∈Sx | κx(x) |≤ κx <∞.

(iv)
∫
κx(x)dx = 1, and

∫
κx(x)2dx = Qx <∞.

(v) The kernel κx(x) is bias reducing of order δ > dθ + 1, where for λ ∈ <dθ

∫
xλ11 · · ·x

λdθ
dθ
κx(x)dx =

0 if | λ |< δ

T x if | λ |= δ
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with T x <∞.

(vi) The kernel κx(x) is differentiable of order δ with bounded derivatives.

max
0≤|λ|≤δ

sup
x∈Sx

| ∇λκx(x) |≤ Lx.

(vii) The bandwidth rate satisfies nhdθ+1
n →∞, nh2δ

n → 0, and log n/nhdθ+1
n → 0 as n→∞.

The kernel function κv,x(v, x) satisfies all the same properties, replacing the constant values κvx in

point (iii), Qvx in (iv), T vx in (v), and Lvx in (vi).

Conditions (i)-(iv) are standard in kernel estimation (see e.g., Honoré and Lewbel 2002; Hansen

2008; Graham et al. 2019). Conditions (v) and (vi) ensure that κx and κv are higher-order kernels

that are selected to control the bias induced by using the inverse of fv|x(vij | Xij) as a weighting

function. Condition (vii) imposes rate conditions on the bandwidth parameter hn, which ensures

the consistent estimation of fx(Xij) and fvx(vij , Xij) (Hansen 2008; Graham et al. 2019).

Assumption 4.4 (Trimming Sequence). (i) For any i, j ∈ Nn and τn ∈ [0, 1], the trimming

function Iτ (vij | Xij) is equal to zero if vij is within a distance τn of the boundary of the support

of Sv|x(Xij), and Iτ (vij | Xij) equals one, otherwise. In particular, Pr [Iτ (vij | Xij) = 1] = 1 − τn.

(ii) The trimming parameter τn satisfies the rate condition τn → 0 as n→∞.

Due to the inverse weighting used in the definition of D̂∗ij , boundary effects could arise from the

density estimation step when computing Ψ̂n,τ . Assumptions 4.2 and 4.4 deal with this technicality

by assuming that fvx,ij is bounded away from zero and by introducing a trimming sequence Iτ,ij

that sets to zero the terms in Ψ̂n,τ with data within a τn distance of the boundary of Svx (see e.g.,

Lewbel 1997, 2000; Honoré and Lewbel 2002; and Khan and Tamer 2010). The trimming parameter

vanishes asymptotically as n→∞.

Assumption 4.5 (Bounded Moments). For any σ({i, j, k, l}) ∈ Nmn

sup
xi1i2∈Sx

E
[(
Dσi1i2 ,τ

)2
| xi1i2

]
fx(xi1i2) ≤ Ex <∞

sup
(vi1i2 ,xi1i2 )∈Sv,x

E
[(
D∗i1i2,τ

)2 | vi1i2 , xi1i2] fvx(vi1i2 , xi1i2) ≤ Evx <∞

where σi1i2 ∈ {(i, k), (i, l), (j, k), (j, l)}.

Assumption 4.5 ensures the existence and boundedness of the conditional expectations defined

above. Similar conditions have been used in Ahn and Powell (1993); Aradillas-Lopez (2012); Hansen

(2008), and Graham et al. (2021).
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4.1 Consistency

Using the assumptions above, the next theorem shows that θ̂n is a consistent estimator of θ0.

Theorem 4.1. Let Assumptions 3.1-4.3 hold and nρn → ∞ as n → ∞. Then (θ̂n − θ0)
p→0 as

n→∞.

Proof. See Appendix A.3.

The rate condition nρn →∞ states that the number of identifying tetrads grows as the sample

size grows. In other words, the term nρn represents the effective sample size. The proof of Theorem

4.1 consists of showing that Γ̂n
p→Γ0 and Ψ̂n,τ

p→Ψ0, followed by invoking a Continuous Mapping

Theorem and Slutsky’s Theorem. The convergence in probability of Γ̂n follows from a variance

calculation. Meanwhile, the convergence in probability of Ψ̂n,τ deserves additional attention as it

accounts for the trimming effect, as well as the non-parametric first-stage estimation.

Notice that given a trimming parameter τn > 0, E
[
WσG

∗
σ,τ

]
is different from E [WσG

∗
σ]. In

Appendix A.3, I show that Ψ̂n,τ−Ψ0
p→ 0 follows from proving that each component of the following

decomposition converges in probability to zero, 1

m∗n

∑
σ∈Nmn

WσĜ
∗
σ,τ −

1

mnρn

∑
σ∈Nmn

E
[
WσG

∗
σ,τ

]+
1

mnρn

∑
σ∈Nmn

{
E
[
WσG

∗
σ,τ

]
− E [WσG

∗
σ]
}
.

The first sum accounts for the fact that given the nonzero trimming sequence, the estimator Ψ̂n,τ is

centered around the trimmed parameter (mnρn)−1
∑

σ∈Nmn
E
[
WσG

∗
σ,τ

]
rather than on Ψ0. Mean-

while, the second sum isolates the effect of trimming on E [WσG
∗
σ]. In Lemma 6 of Appendix A.2,

I show that the effect of trimming is negligible, that is

1

mnρn

∑
σ∈Nmn

{
E
[
WσG

∗
σ,τ

]
− E [WσG

∗
σ]
}

= op(1).

Regarding the first sum, in Appendix A.2, I also show that the effect of the first-stage nonparametric

estimation into the estimator Ψ̂n,τ can be decomposed as follows

Ψ̂n,τ = Ψn,τ + Υ̃1,nτ − Υ̃2,nτ + op(1) (8)
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with

Ψn,τ =
1

m∗n

∑
σ∈Nmn

WσG
∗
σ,τ

Υ̃1,nτ =
1

m∗n

∑
σ∈Nmn

Wσ

{(
D∗σ13,τ

f̂x,σ13 − fx,σ13
fx,σ13

−D∗σ14,τ
f̂x,σ14 − fx,σ14

fx,σ14

)

−

(
D∗σ23,τ

f̂x,σ23 − fx,σ23
fx,σ23

−D∗σ24,τ
f̂x,σ24 − fx,σ24

fx,σ24

)}

Υ̃2,nτ =
1

m∗n

∑
σ∈Nmn

Wσ

{(
D∗σ13,τ

f̂vx,σ13 − fvx,σ13
fvx,σ13

−D∗σ14,τ
f̂vx,σ14 − fvx,σ14

fvx,σ14

)

−

(
D∗σ23,τ

f̂vx,σ23 − fvx,σ23
fvx,σ23

−D∗σ24,τ
f̂vx,σ24 − fvx,σ24

fvx,σ24

)}

and σi1i2 ∈ {(i, k), (i, l), (j, k), (j, l)} for any fixed σ({i, j, k, l}) ∈ Nmn . The term Υ̃1,nτ accounts

for the effect of estimating the marginal density fx,ij at a first-stage, while Υ̃2,nτ accounts for the

effect of estimating the joint density fvx,ij . The proof is completed by showing that

Ψ̂n,τ −
1

mnρn

∑
σ∈Nmn

E
[
WσG

∗
σ,τ

] p→ 0,

and Υ̃1,nτ , Υ̃2,nτ
p→ 0. The convergence in probability of the latter components follows from esti-

mating consistently the probability densities using the kernel estimators in Eq. (6) and (7), i.e.

sup
(v12,x12)

| f̂vx(v12, x12)− fvx(v12, x12) | = op (1)

sup
x12
| f̂x(x12)− fx(x12) | = op (1) .

4.2 Asymptotic Distribution

In this section, I derive the asymptotic distribution of θ̂n. In Appendix A.4, I show that semipara-

metric estimator θ̂n has the following asymptotic linear representation(
θ̂n − θ0

)
= Γ−1

0 × Sn,τ + op(1)

where Sn,τ is a sixth-order U -statistic given by

Sn,τ =

(
n

6

)−1 ∑
φ∈NMn

{ψφnτ − E [ψφnτ | Zn]}
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with kernel function ψφnτ = ψ0,φnτ +ψx,φnτ −ψvx,φnτ . The term Sn,τ is a U -statistic of order six as

the initial order of Ψ̂n,τ is augmented by the kernel estimator f̂v|x,ij , which can be represented as a

second-order U -statistic.8 The functions ψ0,φnτ , ψx,φnτ , and ψvx,φnτ capture the influence functions

of Ψn,τ , Υ̃1,nτ , and Υ̃2,nτ in the decomposition (8) and are defined in Appendix A.2.

A key step in characterizing the asymptotic distribution of θ̂n consists in deriving the Hájek

Projection of Sn,τ onto the space of arbitrary functions (vij , Xij , Ai, Aj), which drives the asymp-

totic distribution of the two-step semiparametric estimator. In particular, in Appendix A.4, I show

that the Hájek Projection of Sn,τ yields the following equivalant representation

(
θ̂n − θ0

)
= 15× Γ−1

0 ×


(
n

2

)−1∑
i<j

ζij

+ op(1)

where

S∗n,τ ≡
(
n

2

)−1∑
i<j

ζij (9)

with ζij ≡ E
[
ψ̃φnτ | Zij , Uij

]
and ψ̃φnτ = ψφnτ − E [ψφnτ | Zn]. Moreover, the asymptotic variance

V
(
S∗n,τ

)
satisfies the order condition Ω̃ ≡ n(n− 1)ρnV

(
S∗n,τ

)
= O (1).

Assumptions 3.1 ensures that the elements of the Hájek Projection in Eq. (9) are conditionally

independent given Zn, with conditional mean equal zero. This conditional independence structure

is used to establish the following asymptotic distribution

Ω̂−1/2
n S∗n,τ N (0, I)

where I represents the dθ × dθ identity matrix and Ω̂n denotes a consistent estimator V
(
S∗n,τ

)
and

is defined as

Ω̂n ≡
(
n

2

)−1∑
i<j

ζijζ
>
ij .

The next theorem formalizes the limiting distribution of θ̂n.

Theorem 4.2. Suppose Assumptions 3.1-4.3 hold and nρn →∞ as n→∞. Then

V−1/2
n

(
θ̂n − θ0

)
 N

(
0, 152I

)
8Alike to the notation used for σ ({i, k, k, l}), which maps each tetrads in a network of size n into the set Nmn , the

function φ is defined as a function that maps each unique 6-tuple {i, j, k, l, s, p} in a network of size n to the index set
NMn = {1, · · · ,Mn}, where Mn =

(
n
6

)
denotes the total number of 6-tuples with distinct indices {i, j, k, l, s, p} ∈ Nn.
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where

Vn ≡ Γ̂−1
n × Ω̂n × Γ̂−1

n . (10)

Proof. See Appendix A.4.

Theorem 4.2 describes the asymptotic distribution of θ̂n. The semiparametric estimator θ̂n

converges to θ0 at a rate
√
n(n− 1)ρn, which is ensured by the order condition of Ω̃. This rate is

the square root of the effective sample given by the number of dyads n(n − 1) and the expected

number of contributing tetrads ρn. Under sparse network asymptotic, the share of contributing

tetrads ρn is allowed to convergence to zero as the network grows, but a lower rate than that at

which n → ∞, i.e, ρn → 0 and nρn → ∞ as n → ∞. Whereas if the network is dense, then

ρn → ρ0 > 0 and θ̂n converges at a parametric rate given by
√
n(n− 1).

5 Simulations

This section presents simulation evidence for the finite sample performance of the semiparametric

estimator introduced in Section 4. I compare the performance of this estimator with the Tetrad

Logit estimator introduced in Graham (2017), which relies on the assumption that the link-specific

disturbance terms are logistically distributed. I consider a wide array of DGP designs that are

meant to capture differences in distributional assumptions, sample size, and degree of connections

in the network.

The undirected network is simulated according to the network model in Eq. (1). I consider a

single observed attribute in Xi, which is drawn as Xi ∼ Beta(2, 2)− 1
2 . The pair-specific covariate

Xij is constructed to account for complementarities on the observed attributes and is defined as

Xij = XiXj . The agent-specific unobserved factor Ai is generated such that it is correlated with

Xi and depends on the sample size n. This last feature offers a useful approach to control the

degree of links formed in the network. In particular, I set Ai = λXi − (1 − λ)Cn × Beta(0.5, 0.5),

where the Beta random variable is independent of Xi and concentrates mass at the boundary of

the unit interval. This implies that conditional on Xi, the individuals cluster at small or high types

of unobserved attributes. The parameter λ ∈ (0, 1) controls the degree of correlation between the

agent-specific heterogeneity and the observed covariate Xi, which is set to λ = 3
4 . The constant Cn

depends on the size of the network and takes the values Cn ∈
{

log(log(n)), log(n)1/2, log(n), n1/3
}

.

Under this design, the choice of Cn regulates the degree of link formation. For instance, if Cn takes

large values, fewer links will be formed in the network, thus generating a more sparse network.

Alternatively, smaller values of Cn will produce denser networks.

Regarding the simulation of the special regressor and link-specific disturbance term, I consider

two main DGP specifications. In the first DGP, I simulate the special regressor as vij ∼ N (0, 1.5)

for i < j, and the link-specific disturbance term is generated as Uij ∼ Beta(2, 2) − 1
2 for i < j.
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Note that under this specification, the independence and support conditions in Assumptions 3.2

and 3.3 are satisfied. This DGP is intended to illustrate the case in which vij has a large support

and the support of Uij is bounded. Moreover, under this design, the Tetrad Logit estimator studied

in Graham (2017) is misspecified.

In the second DGP, I simulate the special regressor as vij ∼ Logistic (0, 1.5) for i < j, and

the link-specific disturbance term is generated as Uij ∼ Logistic(0, 1) for i < j. This DGP is

intended to illustrate the case in which both vij and Uij follow unbounded distributions, but

the distribution of vij has relatively heavier tails than the remaining components in the network

formation model. Under this DGP, the Tetrad Logit estimator in Graham (2017) is correctly

specified. This specification also satisfies the independence and support conditions in Assumptions

3.2 and 3.3.

The true DGP design is completed by setting the parameter value θ0 = 1.5 and considering

two different network sizes n ∈ {100, 200}. The choices of the network size are intended to be

representative of the real-world network studied in Section 6.

I compute the semiparametric two-step estimator θ̂n as defined in Eq. (5). The implementa-

tion of the semiparametric estimator for θ0 requires estimating the conditional density of vij in a

nonparametric first stage. Although Assumption 4.5 instructs the use of higher-order kernels to

eliminate the asymptotic bias, I compute θ̂n using a standard second-order kernel. I do this because

semiparametric estimators computed using high-order kernels tend to have inferior finite sample

properties compared to those obtained using standard kernels. Furthermore, this choice is common

in many semiparametric applications (e.g., Rothe 2009). I use the standard-normal density as the

kernel function. The bandwidth parameter h is set to be equal to 0.025, but I also consider differ-

ent values for the bandwidth parameter, obtaining qualitatively similar results. These results are

summarized in Appendix B. I also consider a fixed trimming design given by Iτ,ij = 1 [| vij |< τ ]

with τ = 2std(vij).

Table 1 summarizes the results of computing the semiparametric two-step estimator θ̂n and the

Tetrad Logit estimator under the first DGP and over 1000 Monte Carlo replications. In particular,

I report the mean, median, standard deviation (std), and mean squared error (MSE) of the two

estimators over the total number of simulations. The final column of Table 1 reports the average

degree of the network across the total number of simulations. I will use this information to describe

the degree of link formation across the different designs.

The top panel in Table 1 shows the results of computing both estimators for θ0 in a network

with a size of n = 100. Both the mean and median show that the semiparametric estimator θ̂n

approximates well the true value of θ0 = 1.5 independently of the network degree. Furthermore,

these results suggest that the estimator θ̂n presents the smallest dispersion in dense network designs,

e.g., the MSE is 0.190 when Cn = log(log(n)) and the average network degree is 39%. As fewer

links are present in the network and the value of Cn increases, the dispersion of this estimator

increases. Relative to the Tetrad Logit estimator, the semiparametric estimator θ̂n has a smaller
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bias but a larger MSE across all the designs. This behavior is expected as, under this DGP

Uij ∼ Beta(2, 2)− 1
2 , and thus, the Tetrad Logit is not correctly specified. The larger dispersion of

θ̂n is explained as its std has to account for the approximation error induced by the nonparametric

first-stage estimation.

In the bottom panel of Table 1, I show the results of estimating θ0 in a large network with

n = 200. The evidence in this scenario reinforces the previous findings and suggests that the

performance of the estimator θ̂n improves across all the designs. For example, in the densest

network scenario when Cn = log(log(n)), the bias shrinks from 0.06 to 0.03, the std decreases by a

factor of 2, and the MSE by a factor of 4. A similar pattern is observed in the sparsest network case

when Cn = n1/3 and only 19% of the links are formed. Moreover, notice that although the MSE of

the Tetrad Logit estimator decreases in the larger network, the bias fails to disappear. This result

highlights the consequence of using the Tetrad Logit estimator to recover θ0 when the distribution

of Uij is not logistic.

Table 2 summarizes the results of computing the semiparametric two-step estimator θ̂n and the

Tetrad Logit estimator under the second DGP, which assumes the error term Uij follows a logistic

distribution. The results are qualitatively similar, which suggests that θ̂n estimates well the true

value of θ0 when both vij and Uij follow an unbounded distribution. Overall, these numerical

experiments convey two main insights. First, the semiparametric estimator θ̂n yields a reliable

inference for the parameter θ0 across different degrees of network formation. Second, in contrast

to the Tetrad Logit, the estimator θ̂n represents a viable alternative when the distribution of Uij

is unknown.

6 Empirical Application

In this section, I study a friendship network of high-school students. The objective is to estimate the

preference parameters associated with socioeconomic, demographic, health, and educational factors

that could drive the formation of this network. I use the self-reported friendship connections from

the Add Health dataset to construct an undirected network of high-school friends (Harris et al.

2009) and compute the semiparametric estimator θ̂n introduced in Section 4.

This is the first paper that uses the Add Health dataset to estimate a dyadic network model

with unobserved heterogeneity using a special regressor. Thus, the results presented below provide

new and richer evidence on the predictive factors that drive the formation of a friendship network.9

In this analysis, I use a representative sample of four saturated high schools included in Wave

1 of the In-Home survey.10 In Appendix D, I describe in detail the Add Health dataset and the

9The Add Health dataset has been employed to study the relationship between social interactions and economic
and behavioral outcomes (see Masten 2018 and references therein). Fewer studies have utilized this dataset to estimate
the formation of a friendship network, but none has studied a dyadic specification with unobserved agent-specific
heterogeneity (cf. Goldsmith-Pinkham and Imbens 2013 and Christakis et al. 2020).

10Saturated schools are those where all the students were selected for In-Home interviews regardless of whether
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construction of the sample for this study. I also provide evidence of the representativeness of this

sample. The final sample includes 273 students.

An undirected friendship link Dij for any students i and j is recorded to be equal to 1 if either i

or j name each other as friends, regardless of the order in which they do it. Of the 273 students in

the network, 34 did not form any connection and thus remained isolated. On average, each student

named up to 3 friends, and the maximum number of friendship connections formed by a student is

10. Figure 1 represents the empirical distribution of the network degree.

As a special regressor, I consider students’ birth weight. There is abundant empirical evidence

documenting the relationship between birth weight and cognitive and non-cognitive skills, health-

related and socioeconomic outcomes (see, e.g., Almond et al. 2018 for a survey of the literature

on early childhood conditions). Based on the established relationship between birth weight and

individuals’ personality traits, I use birth weight as a contributing factor to the formation of a

friendship network among high-school students.

To examine the effect of birth weight on the formation of a friendship network, I specify the

birth weight of student i in deviation from the average birth weight in my sample. In other words,

the birth weight of student i is defined as vi − v̄n, where v̄n = n−1
∑n

i=1 vi is approximately 3400

grams.11 In terms of the dyad-specific variable vij in the network model of Eq. (1), vij captures

assortative matching among those students with a birth weight value above or below the sample

average, i.e., vij = (vi − v̄n)×(vj − v̄n).

Importantly, the special regressor is required to satisfy the conditional independence and support

conditions described in Assumptions 3.2 and 3.3. Here, I discuss why birth weight is likely to satisfy

both assumptions.

Conditional Independence: Assumption 3.2 implies that the students’ birth weight vij must

be conditionally independent from eij = Ai + Aj − Uij given Xij . While birth weight is not

randomly assigned, the richness of the Add Health dataset allows me to control for a wide range

of socio-demographic, economic, health, and educational factors of both the students and their

parents, which have been shown to be related to both students’ birth weight and their unobserved

individual-specific attributes. In particular, I include covariates that aim to capture assortative

matching across demographic, academic, economic, and physical attributes, as well as on early

childhood conditions. In Appendix D, I describe in detail the observed characteristics used in this

analysis, their relationship with students’ birth weight and individual traits, and their potential

effect on establishing friendship links.12

While potentially there could be other unobserved factors that are correlated with birth weight

they had completed an In-School questionnaire. I focus on saturated schools since their design allows me to recover
the complete friendship network for all the students enrolled in these schools.

11While there is no consensus on how to specify birth weight in a regression (e.g., levels, logs, and deviations from
the mean), this specification has also been used in Black et al. (2007) and Maruyama and Heinesen (2020).

12Appendix Table D1 summarizes their descriptive statistics.
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and affect the formation of a friendship network, controlling for this rich set of attributes should

mitigate concerns in this respect. In turn, any residual variation in birth weight is likely to be as

good as idiosyncratic.13 In other words, the specification of the network formation model that I

propose here should contribute to ensuring that birth weight satisfies Assumption 3.2.

Large Support: the special regressor is also required to satisfy the support condition described

in Assumption 3.3. Birth weight is recorded as a continuous variable, and after centering it around

zero, the demeaned variable vi − v̄n has a support that ranges from -1567 to 1975 grams. Figure

2 presents the empirical distribution of birth weight, which, jointly with the descriptive statistics

reported in Table D1, indicates that the special regressor is a continuous variable that has larger

variance and support than the remaining covariates in the network formation model in Eq. (1).14

Therefore, Assumption 3.3 holds in this context. In summary, birth weight is likely to satisfy both

Assumptions 3.2 and 3.3, and thus, represent a valid special regressor.

Table 3 summarizes the results of estimating the network formation model in Eq. (1) using the

two-step semiparametric estimator θ̂n over a sample of 273 students taking 37, 128 unique linking

decisions. This table also includes the results from two parametric designs that will be used to

assess the performance of the semiparametric approach: (i) a model with a logistic error term with

fixed effects and (ii) a model with a logistic error term without fixed effects.

The semiparametric estimates in column (1) indicate positive homophily effects on the covari-

ates of age, gender, repeated grade, smoking and drinking habits, religion, divorced parents, and

breastfed at birth. These findings suggest that students tend to form friendship connections with

other students of similar age and gender, but also with those who have lived similar experiences,

such as repeating an academic grade or experiencing their parents’ divorce. Homophily among

students who have been breastfed might represent a proxy for different mechanisms, such as es-

tablishing friendship connections among students nurtured by their mothers. Additionally, the

homophily effects on smoking and drinking habits and religion suggest that sharing similar habits

or social norms increases the probability of establishing a friendship connection. Overall, the results

of this analysis seem plausible. Moreover, this analysis documents the importance of additional

factors beyond those that have been identified by the literature on friendship network formation,

such as age and gender (Miyauchi 2016; Christakis et al. 2020).15

Next, I compare the results of the semiparametric estimator with those of the parametric spec-

ifications. First, the semiparametric methodology estimates similar homophily coefficients to the

13If the researcher was to collect the network data by conducting a survey or an experiment, the special regressor
could be constructed as a covariate that is independently distributed of the remaining individual attributes as in the
experiment on willingness to pay for protecting wetland habitats and wildlife in California discussed in Lewbel et al.
(2011).

14Appendix Table D2 summarizes the descriptive statistics at a dyadic level, which reinforces this evidence.
15Although imprecisely estimated, the signs of the remaining estimates are also empirically interesting. Notably,

the results suggest positive homophily effects on overall GPA, clubs, number of siblings, attractiveness, and mother’s
participation in the labour market. Moreover, these results indicate a negative homophily effect on covariates such
as depression, order of siblings, mother’s age at birth, and mother’s health risk factors.
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logistic model with fixed effects, though, as expected, it generates larger standard errors. When

the two methodologies differ, the results of the semiparametric estimator seem more intuitive. For

instance, the parametric model predicts a negative effect on attractiveness, disability, and mother’s

participation in the labour market, and positive homophily effects on depression, which seem at

odds with the existing evidence on their relationship with individuals’ personality traits (Brunello

and Schlotter 2011). As for the second parametric specification, when the fixed effects are not

included, the estimated coefficients on gender, ethnicity, and overall GPA are incompatible with

those documented in the literature on social networks (Miyauchi 2016; Christakis et al. 2020).

Overall, these results document new factors of homophilic preferences in the formation of friend-

ship networks. They also provide empirical support for the validity of the methodology proposed

here and its strength relative to other methods.

7 Conclusion

This paper studies a network formation model with unobserved agent-specific heterogeneity and

offers two main contributions to the literature on network formation. First, it proposes a new iden-

tification strategy that recovers the preference parameters associated with homophily on observed

attributes. The identification result relies on the existence of a special regressor, and to the best of

my knowledge, this paper represents the first generalization of the special regressor methodology

to analyze network models.

The second contribution of this paper is to introduce a two-step semiparametric estimator for

the parameter of interest. The estimator has a least-squares analytic form and is computationally

tractable even in large networks. In Monte Carlo simulations, I show that it performs well in finite

samples and networks with different degrees of sparsity.

Finally, in an empirical application, I use the methodology developed in this paper to study the

factors that drive the formation of a friendship network among high-school students in the Add

Health dataset. As a special regressor, I consider students’ birth weight and control for a wide

range of observed attributes of the students and their parents. Consistent with the results of the

literature, I find evidence for homophily on age and gender and document additional effects on

school achievements, habits, social norms, and parental strategies. A comparison of these results

with those obtained under parametric specifications provides empirical support for the validity of

the methodology proposed here and its strength relative to other methods.
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de Paula, Á. (2020). Econometric models of network formation. Annual Review of Economics 12,
775–799.

Del Bono, E., J. Ermisch, and M. Francesconi (2012). Intrafamily resource allocations: a dynamic
structural model of birth weight. Journal of Labor Economics 30 (3), 657–706.

Dzemski, A. (2019). An empirical model of dyadic link formation in a network with unobserved
heterogeneity. Review of Economics and Statistics 101 (5), 763–776.

Figlio, D., J. Guryan, K. Karbownik, and J. Roth (2014). The effects of poor neonatal health on
children’s cognitive development. American Economic Review 104 (12), 3921–55.

Fitzsimons, E. and M. Vera-Hernández (2015). Breastfeeding and child development. University
College London and Institute for Fiscal Studies.

Gao, W. Y. (2020). Nonparametric identification in index models of link formation. Journal of
Econometrics 215 (2), 399–413.

Goldsmith-Pinkham, P. and G. W. Imbens (2013). Social networks and the identification of peer
effects. Journal of Business & Economic Statistics 31 (3), 253–264.

24



Graham, B. S. (2017). An econometric model of network formation with degree heterogeneity.
Econometrica 85 (4), 1033–1063.

Graham, B. S. (2020). Network data. In Handbook of Econometrics, Volume 7, pp. 111–218.
Elsevier.

Graham, B. S., F. Niu, and J. L. Powell (2019). Kernel density estimation for undirected dyadic
data. arXiv preprint arXiv:1907.13630 .

Graham, B. S., F. Niu, and J. L. Powell (2021). Minimax risk and uniform convergence rates for
nonparametric dyadic regression. Technical report, National Bureau of Economic Research.

Han, A. K. (1987). Non-parametric analysis of a generalized regression model: the maximum rank
correlation estimator. Journal of Econometrics 35 (2), 303–316.

Hansen, B. E. (2008). Uniform convergence rates for kernel estimation with dependent data.
Econometric Theory 24 (3), 726–748.

Harris, K. M., C. T. Halpern, E. Whitsel, J. Hussey, J. Tabor, P. Entzel, and J. R. Udry (2009).
The national longitudinal study of adolescent health: Research design. WWW document .
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8 Tables

Table 1: Simulation Results

θ̂n Tetrad Logit

mean median std MSE mean median std MSE Degree

n = 100
log(log(n)) 1.5610 1.5546 0.4327 0.1909 1.6528 1.6526 0.2839 0.1040 0.3990

log(n)1/2 1.5529 1.5534 0.4838 0.2368 1.6421 1.6415 0.3038 0.1125 0.3526
log(n) 1.5584 1.5662 0.6267 0.3962 1.6437 1.6373 0.3585 0.1492 0.2386

n1/3 1.5546 1.5513 0.6110 0.3763 1.6321 1.6325 0.3658 0.1513 0.2368
n = 200

log(log(n)) 1.5307 1.5233 0.2133 0.0465 1.6413 1.6429 0.1402 0.0396 0.3916

log(n)1/2 1.5280 1.5174 0.2318 0.0545 1.6379 1.6427 0.1458 0.0403 0.3348
log(n) 1.5276 1.5334 0.3263 0.1072 1.6373 1.6347 0.1839 0.0527 0.2135

n1/3 1.5150 1.5165 0.3517 0.1239 1.6433 1.6445 0.1770 0.0519 0.1953

1 DGP: vij ∼ N (0, 1.5) and Uij ∼ Beta(2, 2)− 1
2
.

2 Total number of Monte Carlo simulations = 1000.
3 Bandwidth parameter h = 0.025.

Table 2: Simulation Results

θ̂n Tetrad Logit

mean median std MSE mean median std MSE Degree

n = 100
log(log(n)) 1.5201 1.5232 1.1119 1.2368 1.3777 1.3778 0.8961 0.8179 0.4459

log(n)1/2 1.5595 1.5660 1.1017 1.2173 1.3960 1.3587 0.9006 0.8219 0.4211
log(n) 1.5015 1.5166 1.2400 1.5377 1.4122 1.3956 0.9287 0.8702 0.3518

n1/3 1.3850 1.4209 1.1783 1.4017 1.3493 1.3620 0.9269 0.8818 0.3512
n = 200

log(log(n)) 1.4746 1.4622 0.5207 0.2718 1.3698 1.3499 0.4180 0.1917 0.4437

log(n)1/2 1.4882 1.4802 0.5245 0.2752 1.3821 1.3892 0.4308 0.1995 0.4125
log(n) 1.4746 1.4396 0.5667 0.3218 1.3915 1.3892 0.4438 0.2087 0.3346

n1/3 1.4201 1.4168 0.6100 0.3785 1.3941 1.3927 0.4726 0.2346 0.3194

1 DGP: vij ∼ Logistic (0, 1.5) and Uij ∼ Logistic (0, 1)
1 Total number of Monte Carlo simulations = 1000.
2 Bandwidth parameter h = 0.025.
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Figure 1: Network degree empirical distribution
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Figure 2: Birth weight empirical distribution
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Table 3: Point Estimates

Semiparametric Logistic with FE Logistic without FE
(1) (2) (3)

estimate s.e. estimate s.e. estimate s.e.

age 1.045∗∗ (0.405) 1.769∗∗∗ (0.070) 0.584∗∗∗ (0.113)
gender 0.397∗ (0.230) 0.139∗∗ (0.056) −0.204∗∗ (0.096)
white 0.007 (3.469) 4.911∗∗∗ (0.203) −0.764∗∗∗ (0.010)
grade −0.766 (0.234) 2.985∗∗∗ (0.074) 1.704∗∗∗ (0.108)
overall GPA 0.763 (0.540) 0.365∗∗∗ (0.052) −0.111∗∗∗ (0.016)
clubs 0.030 (0.028) 0.146∗∗∗ (0.010) 0.073∗∗∗ (0.010)
repeated grade 1.713∗∗ (0.675) 1.103∗∗∗ (0.222) −0.767∗∗∗ (0.297)
depressed −0.122 (0.244) 0.240∗∗∗ (0.072) 0.076∗∗∗ (0.088)
number of siblings 0.467 (0.754) 0.029 (0.029) 0.069∗∗∗ (0.017)
order of siblings −0.594 (0.486) 0.194∗∗∗ (0.047) −0.138∗∗∗ (0.038)
mother highly educated −1.173 (1.252) −0.590∗∗∗ (0.141) 0.697∗∗∗ (0.132)
mother works 1.348 (1.384) −2.456∗∗∗ (0.233) −0.215∗∗ (0.102)
S&D habits 0.743∗ (0.443) 1.035∗∗∗ (0.110) 0.121 (0.108)
friends’ S&D habits 0.096 (0.169) 0.272∗∗∗ (0.028) 0.090∗∗∗ (0.025)
good neighborhood −0.011 (0.703) −0.605∗∗∗ (0.125) −0.327∗∗∗ (0.101)
religion 1.232∗ (0.737) 1.075∗∗∗ (0.089) 1.004∗∗∗ (0.110)
college expectations −0.134 (0.221) 0.130∗∗∗ (0.037) −0.116∗∗∗ (0.007)
attractiveness 0.023 (0.148) −0.206∗∗∗ (0.054) 0.172∗∗∗ (0.061)
mother’s health 0.030 (0.273) 0.110∗∗∗ (0.036) −0.132∗∗∗ (0.009)
divorced parents 2.091∗∗ (0.484) 1.021∗∗∗ (0.130) 0.069 (0.178)
breastfed 1.669∗∗ (0.658) 0.018 (0.117) 0.669∗∗∗ (0.149)
disability 0.648 (2.588) −2.670∗∗∗ (0.501) −2.469∗∗ (1.056)
mother’s age at birth −0.812 (0.529) 0.133 (0.111) −0.156 (0.225)
mother’s health risk factors −0.894 (0.635) −0.004 (0.121) −0.370∗∗ (0.168)
log household income −0.497 (0.667) 1.081∗∗∗ (0.074) 0.205∗∗ (0.102)

Sample size n = 273. Significance levels: ∗10%, ∗∗5%, and ∗∗∗1%.
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A Mathematical Proofs

A.1 Identification

Proof of Lemma 1. Let Q(x, e) = −x>θ0 − e. For any i and j consider consider

E [D∗ik | Xij ,X−ij ] = E
[
E
[
D∗ij | vij ,Xn

]
| Xij ,X−ij

]
= E

[
E [Dij | vij ,Xn]− 1 [vij > 0]

fv|x(vij | Xij)
| Xij ,X−ij

]
=

∫ v(Xij)

v(Xij)

{
E [Dij | vij ,Xn]− 1 [vij > 0]

fv|x(vij | Xij)

}
fv|x(vij | Xij)dvij

=

∫ v(Xij)

v(Xij)

{∫
Se|X
{1 [vij ≥ Q(Xij , eij)]} dFe|x(eij | Xn)− 1 [vij > 0]

}
dvij

=

∫
Se|X

∫ v(Xij)

v(Xij)
{1 [vij ≥ Q(Xij , eij)]− 1 [vij > 0]} dvijdFe|x(eij | Xn)

=

∫
Se|X
−Q(Xij , eij)dFe|x(eij | Xn)

= X>ij θ0 + E [Ai +Aj |Xn]

where the third equality follows from Assumption 3.1 which states that vij is conditionally inde-

pendent from X−ij given Xij . The second to last equality is the result of∫ v(Xij)

v(Xij)
{1 [vij ≥ Q(Xij , eij)]− 1 [vij > 0]} dvij = −Q(Xij , eij).

Proof of Theorem 3.1. Fix any tetrad σ ({i, j, k, l}) ∈ NMn , notice that

E [D∗ik −D∗il |Xn] = (Xik −Xil)
> θ0 + E [Ak −Al |Xn] ,

and, consequently

E [G∗σ |Xn] = W>σ θ0 (A.1)

and

E [WσG
∗
σ |Xn] = WσW

>
σ θ0.

The result follows from a Law of Iterated Expectations, aggregating all the information across

all the contributing tetrads σ ∈ Nmn , and invoking Assumption 3.4, which ensures that Γ0 is
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nonsingular.

A.2 Nonparametric Kernel Estimator

The nonparametric kernel estimators are defined as

f̂vx(v12, x12) =
1

n(n− 1)

n∑
i=1

∑
j 6=i

Kvxh,ij [v12, x12]

f̂x,ij(x12) =
1

n(n− 1)

n∑
i=1

∑
j 6=i

Kxh,ij [x12]

where the following notation is used for the kernels

Kvxh,ij [v12, x12] ≡ 1

hdθ+1
n

Kvx,ij [v12, x12]

Kxh,ij [x12] ≡ 1

hdθn
Kx,ij [x12] .

The bandwidth parameter is denoted by hn and

Kvx,ij [v12, x12] = Kvx [vij − v12, Xij − x12] = κvx

[
vij − v12

hn
,
Xij − x12

hn

]
Kx,ij [x12] = Kx [Xij − x12] = κx

[
Xij − x12

hn

]
.

Lemma 2. Suppose that the assumptions in Theorem 4.1 hold. Then

sup
(v12,x12)

| f̂vx(v12, x12)− fvx(v12, x12) | = Op (α1n)

sup
x12
| f̂x(x12)− fx(x12) | = Op (α2n) ,

with

α1n ≡
(

log n

nhdθ+1
n

)1/2

α2n ≡
(

log n

nhdθn

)1/2

Proof. This result follows from Theorem 3.2 in Graham et al. (2021) or Theorem 6 in Hansen

(2008).

Lemma 3. Under assumptions 3.1, 4.2, and 4.3, the kernel estimator has the following represen-
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tation

f̂x(x12)− fx(x12) =
1

n(n− 1)

n∑
i=1

∑
j 6=i
{Kxh,ij (x12)− E [Kxh,ij (x12)]}+ op(1/

√
n)

f̂vx(v12, x12)− fvx(v12, x12) =
1

n(n− 1)

n∑
i=1

∑
j 6=i
{Kvxh,ij (v12, x12)− E [Kvxh,ij (v12, x12)]}+ op(1/

√
n).

Proof. Consider the result for f̂x,12. Notice that

E
[
f̂x,12

]
= E [Kxh,ij (x12)]

=
1

hdθn
E [Kx,ij (x12)]

=
1

hdθn

∫
Kx (Xij − x12) fx,ijdXij

=

∫
fx(x12 + νh)κx (ν) dν

=

∫ fx,12 +

δ∑
|λ|=1

h
|λ|
n

| λ |
∇|λ|fx(x12 + hnṽ)

(
νλ11 · · · ν

λdθ
dθ

)|λ|κx (ν) dν

= fx,12 + o(hδn),

where the fourth equality follows from the changes of variables x12 = Xij + νhn. The fifth equality

follows from Assumption 4.2, which ensures that fx(·) is δ-times differentiable. The last equality

follows from Assumption 4.3, which ensures that κx(·) is a bias-reducing kernel of order δ. The

result follows from Assumptions 4.3 which requires that nh2δ
n → 0 as n→∞.

Lemma 4. Under assumptions 3.1, 4.2, and 4.3, the variance of the kernels are the following

V
(
f̂x(x12)

)
= O

(
1

n(n− 1)hdθn
Ω2(x12)

)
+O

(
1

n
Ω1(x12)

)

V
(
f̂vx(v12, x12)

)
= O

(
1

n(n− 1)hdθ+1
n

Ω2(v12, x12)

)
+O

(
1

n
Ω1(v12, x12)

)
where

Ω1(x12) = E
[
fx (x12 | X1)2

]
Ω2(x12) = fx,12

∫
κx (v)2 dv

Ω1(v12, x12) = E
[
fvx (v12, x12 | v1, X1)2

]
Ω2(v12, x12) = fvx,12

∫
κvx (v)2 dv.

Proof. A proof of this Lemma can be found in Graham et al. (2019). We show the result for f̂x(x12)
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for completeness.

V ar
(
f̂x,12

)
= Cov

 1

n(n− 1)

∑
i 6=j

Kxh,ij (x12) ,
1

n(n− 1)

∑
k 6=l

Kxh,kl (x12)


=

(
1

n(n− 1)

)2∑
i 6=j

∑
k 6=l

Cov (Kxh,ij (x12) ,Kxh,kl (x12))

=

(
1

n(n− 1)

)2
∑
i 6=j

V ar (Kxh,ij (x12)) +

n∑
i=1

∑
j 6=i

∑
k 6=i,j

Cov (Kxh,ij (x12) ,Kxh,kl (x12))


=

(
1

n(n− 1)

)2

{n(n− 1)V ar (Kxh,ij (x12)) + n(n− 1)(n− 2)Cov (Kxh,ij (x12) ,Kxh,ik (x12))}

=

{
1

n(n− 1)
V ar (Kxh,ij (x12)) +

(n− 2)

n(n− 1)
Cov (Kxh,ij (x12) ,Kxh,il (x12))

}
that is

V ar
(
f̂x,12

)
= O

(
V ar (Kxh,ij (x12))

n(n− 1)

)
+O

(
Cov (Kxh,ij (x12) ,Kxh,ik (x12))

n

)
. (A.2)

Moreover,

E
[
Kxh,ij (x12)2

]
=

1

h2dθ
n

∫
Kx,ij (Xij − x12)2 fx,ijdXij

=
1

hdθn

∫
fx(x12 + νhn)κx (ν)2 dν

=
1

hdθn

∫ fx,12 +

δ∑
|λ|=1

h
|λ|
n

| λ |
∇|λ|fx(x12 + hnṽ)

(
νλ11 · · · ν

λdθ
dθ

)|λ|κx (ν)2 dν

=
1

hdθn

{
fx,12

∫
κx (ν)2 dν

}

+
1

hdθn

∫  δ∑
|λ|=1

h
|λ|
n

| λ |
∇|λ|fx(x12 + hnṽ)

(
νλ11 · · · ν

λdθ
dθ

)|λ|κx (ν)2 dν

=
1

hdθn
Ω2(x12) +O(1)

where the second equality follows from the changes of variables Xij = X12+νhn. The third equality

follows from Assumption 4.2, which ensures that fx(·) is δ-times differentiable. The fourth equality

follows from Assumption 4.3, which ensures that κx(·) has finite second moments. The last equality
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uses

Ω2(x12) = fx,12

∫
κx (ν)2 dν.

Thus

V ar (Kxh,ij(x12)) = E
[
Kxh,ij(x12)2

]
− (E [Kxh,ij(x12)])

=
1

hdθn
Ω2(x12)− f2

x,12 + o
(
h2δ
n

)
.

Similarly,

E [Kxh,ij (x12)Kxh,ik (x12)]

=
1

h2dθ
n

E [E [Kx,ij (x12)Kx,ik (x12) | Xi]]

=
1

h2dθ
n

E
∫ ∫

Kx (Xij − x12)Kx (Xik −X12) fx(Xij | Xi)fx(Xik | Xi)dXijdXik

=
1

h2dθ
n

E
∫
Kx (Xij − x12) fx(Xij | Xi)dXij

∫
Kx (Xik −X12) fx(Xik | Xi)dXik

= E
∫
κx (ν1) fx(x12 + ν1hn | Xi)dν1

∫
κx (ν2) fx(x12 + ν2hn | Xi)dν2

= Ω1(x12) + o(hδ),

where

Ω1(x12) = E
[
fx(x12 | Xi)

2
]
. (A.3)

The third equality follows from Assumption 3.1. The fourth equality follows from the change of

variables Xij = x12 + ν1hn and Xik = x12 + ν2hn. It follows from the previous results that

V ar (Kxh,ij (x12)) = E
[
Kxh,ij (x12)2

]
− E [Kxh,ij (x12)]2 =

1

hdθn
Ω2(x12)− f2

x,12

Cov (Kxh,ij (x12) ,Kxh,ik (x12)) = Ω1(x12)− f2
x,12.

Consequently

V ar
(
f̂x,12

)
= O

(
V ar (Kxh,ij (x12))

n(n− 1)

)
+O

(
Cov (Kxh,ij (x12) ,Kxh,ik (x12))

n

)
= O

(
1

n(n− 1)hdθn

)
Ω2(x12) +O

(
1

n

)
Ω1(x12).

Lemma 5 (Consistency). Suppose the assumptions of Theorem 4.1 hold. For any σ({i, k, j, l}) ∈
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Nmn, let σi1i2 ∈ {(i, k), (i, l), (j, k), (j, l)},

1

mnρn

∑
σ∈Nmn

{
WσG

∗
σ,τ − E

[
WσG

∗
σ,τ

]}
= op(1)

Proof. For any ε > 0, consider

Pr

∣∣∣∣∣∣ 1

mnρn

∑
σ∈Nmn

{
WσG

∗
σ,τ − E

[
WσG

∗
σ,τ

]}∣∣∣∣∣∣ > ε


≤ 1

ε2m2
nρ

2
n

E

 ∑
σ∈Nmn

{
WσG

∗
σ,τ − E

[
WσG

∗
σ,τ

]}
2

≤ 1

ε2nmnρ2
n

∑
σ∈Nmn

{
E
[(
WσG

∗
σ,τ − E

[
WσG

∗
σ,τ

])2 | ωσ = 1
]

Pr [ωσ = 1]
}

= Op

(
1

nρn

)
.

The first inequality follows from Chebyshev’s inequality. The second inequality follows from

Cauchy-Schwarz inequality, and the fact that for two tetrads σ1 and σ2 with zero overlapping

indices E
[(
Wσ1G

∗
σ1,τ − E

[
Wσ1G

∗
σ1,τ

]) (
Wσ2G

∗
σ2,τ − E

[
Wσ2G

∗
σ2,τ

])>]
= 0. The last relationship fol-

lows from Assumption 4.1 which ensures that W is a compact subsets of <dθ . Hence

1

mn

∑
σ∈Nmn

{
E
[(
WσG

∗
σ,τ − E

[
WσG

∗
σ,τ

])2 | ωσ = 1
]

Pr [ωσ = 1]
}

= Op (ρn)

The converge in probability to zero follows from the rate condition nρn →∞ as n→∞.

Lemma 6 (Trimming). Suppose the assumptions of Theorem 4.1 hold. For any σ({i, k, j, l}) ∈
Nmn, let σi1i2 ∈ {(i, k), (i, l), (j, k), (j, l)},

Ψ0,τ −Ψ0 =
1

E [m∗n]

∑
σ∈Nmn

{
E
[
WσG

∗
σ,τ

]
− E [WσG

∗
σ]
}

= op(1) (A.4)

Proof. For any σ({i, j, k, l}) ∈ NMn and σi1i2 ∈ {(i, k), (i, l), (j, k), (j, l)}, consider

1

mnρn

∑
σ∈NMn

Wσ

{
G∗σ −G∗σ,τ

}
=

1

mnρn

∑
σ∈NMn

Wσ

{(
D∗σ13I

c
σ13,τ −D

∗
σ14I

c
σ14,τ

)
−
(
D∗σ23I

c
σ23,τ −D

∗
σ24I

c
σ24,τ

)}
.

The last step follows from noticing that for any σi1i2 ∈ {(i, k), (i, l), (j, k), (j, l)},

D∗σi1i2
−D∗σi1i2 ,τ = D∗σi1i2

{
1− Iσi1i2 ,τ

}
= D∗σi1i2

Icσi1i2 ,τ
(A.5)
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where Icσi1i2 ,τ
= 1− Iσi1i2 ,τ . For any ε > 0, consider

Pr

∣∣∣∣∣∣ 1

mnρn

∑
σ∈NMn

Wσ

{
G∗σ −G∗σ,τ

}∣∣∣∣∣∣ > ε


≤ε2

(
1

nρ2
n

)
1

mn

∑
σ∈NMn

E
[(
Wσ

{(
D∗σ13I

c
σ13,τ −D

∗
σ14I

c
σ14,τ

)
−
(
D∗σ23I

c
σ23,τ −D

∗
σ24I

c
σ24,τ

)})2]
=O

(
τn
nρn

)
where the inequality follows from Chebyshev’s inequality and subsequently Cauchy-Schwarz in-

equality. The equality follows from

1

mn

∑
σ∈NMn

E
[(
Wσ

{(
D∗σ13I

c
σ13,τ −D

∗
σ14I

c
σ14,τ

)
−
(
D∗σ23I

c
σ23,τ −D

∗
σ24I

c
σ24,τ

)})2]

=O

 1

mn

∑
σ∈NMn

E
[
E
[
WσW

>
σ {(G∗σ)}2 | Icσ13,τ = 1, Icσ14,τ = 1, Icσ24,τ = 1, Icσ24,τ = 1

]]
τn


= O (ρnτn)

where the first equality follows Assumption 4.4, which ensures that Pr
[
Icij,τ = 1

]
= τn. The second

equality follows Assumption 4.1, and the fact that the sample average of the inner expectation

across all tetrads is of order ρn. Therefore, the rate conditions nρn → ∞ and τn → 0 as n → ∞
ensure that

1

mnρn

∑
σ∈NMn

Wσ

{
G∗σ −G∗σ,τ

}
= op(1).

and consequently

1

mnρn

∑
σ∈Nmn

{
E
[
WσG

∗
σ,τ

]
− E [WσG

∗
σ]
}

= o(1).

Lemma 7 (Ψn Expansion). Let Assumptions 3.1-4.3 hold. Then

1

mnρn

∑
σ∈Nmn

WσĜ
∗
σ,τ = Ψn,τ + Υ1,nτ −Υ2,nτ + op(1)
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where

Ψn,τ =
1

mnρn

∑
σ∈Nmn

WσG
∗
σ,τ

Υ1,nτ =
1

mnρn

∑
σ∈Nmn

Wσ

{(
D∗σ13,τ

f̂x,σ13 − fx,σ13
fx,σ13

−D∗σ14,τ
f̂x,σ14 − fx,σ14

fx,σ14

)

−

(
D∗σ23,τ

f̂x,σ23 − fx,σ23
fx,σ23

−D∗σ24,τ
f̂x,σ24 − fx,σ24

fx,σ24

)}

Υ2,nτ =
1

mnρn

∑
σ∈Nmn

Wσ

{(
D∗σ13,τ

f̂vx,σ13 − fvx,σ13
fvx,σ13

−D∗σ14,τ
f̂vx,σ14 − fvx,σ14

fvx,σ14

)

−

(
D∗σ23,τ

f̂vx,σ23 − fvx,σ23
fvx,σ23

−D∗σ24,τ
f̂vx,σ24 − fvx,σ24

fvx,σ24

)}
.

Proof. Notice that

1

mnρn

∑
σ∈Nmn

WσĜ
∗
σ,τ =

1

mnρn

∑
σ({i,j,k,l})∈Nmn

Wσ

{(
D̂σ13,τ − D̂σ14,τ

)
−
(
D̂σ23,τ − D̂σ24,τ

)}
= (η̂13,τ − η̂14,τ )− (η̂23,τ − η̂24,τ )

where for any σ({i, k, j, l}) ∈ Nmn and σi1i2 ∈ {(i, k), (i, l), (j, k), (j, l)}

η̂i1i2,τ ≡
1

mnρn

∑
σ({i,j,k,l})∈Nmn

WσD̂σi1i2 ,τ
.

Given the definition of D̂σi1i2 ,τ
, consider a second-order Taylor expansion of f̂x,σi1i2/f̂vx,σi1i2 around

fx,σi1i2/fvx,σi1i2 . The quadratic terms in the expansion involve 2nd order derivatives of fx,σi1i2/fvx,σi1i2
evaluated at f̄x,σi1i2 and f̄vx,σi1i2 , where f̄x,σi1i2 lies between f̂x,σi1i2 and fx,σi1i2 , and similarly,

f̄vx,σi1i2 lies between f̂vx,σi1i2 and fvx,σi1i2 . It follows from substituting a second-order Taylor ex-

pansion of f̂x,σi1i2/f̂vx,σi1i2 around fx,σi1i2/fvx,σi1i2 into η̂i1i2,τ

η̂i1i2,τ =
1

mnρn

∑
σ∈Nmn

WσD
∗
σi1i2 ,τ

{
1 +

f̂x,σi1i2 − fx,σi1i2
fx,σi1i2

−
f̂vx,σi1i2 − fvx,σi1i2

fvx,σi1i2

}
+Ri1i2,n,

where Ri1i2,n denotes the reminder term. It follows after aggregating η̂13,τ , η̂14,τ , η̂23,τ , and η̂24,τ

that

1

mnρn

∑
σ∈Nmn

WσĜ
∗
σ,τ =Ψn,τ + Υ1,nτ −Υ1,nτ +Rn (A.6)
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where Rn = R13,n −R14,n −R23,n +R24,n. The proof is complete if we show that Rn = op(1). Let

f̃x,σi1i2 = f̂x,σi1i2 − fx,σi1i2
f̃vx,σi1i2 = f̂vx,σi1i2 − fvx,σi1i2 .

The first component of Rn is∣∣∣∣∣∣ 1

mnρn

∑
σ∈Nmn

Wσ

{
D∗σ13,τ

f̄2
vx,σ13

(
f̃vx,σ13

)2
−
D∗σ14,τ

f̄2
vx,σ14

(
f̃vx,σ14

)2
−
D∗σ23,τ

f̄2
vx,σ23

(
f̃vx,σ23

)2
+
D∗σ24,τ

f̄2
vx,σ24

(
f̃vx,σ24

)2
}∣∣∣∣∣∣

≤B−2
vx

(
sup

(v12,x12)∈Svx
|f̂vx,12 − fvx,12|

)2
 1

mnρn

∑
σ∈Nmn

WσG
∗
σ,τ


=Op(1)

(
sup

(v12,x12)∈Svx
|f̂vx,12 − fvx,12|

)2

=Op

((
log n

nhL+1

))
.

where the first inequality follows from Assumptions 4.2. The first equality follows from Lemma 5.

The last equality follows from the from the uniform rate of convergence of the kernel estimator in

Lemma 2. The remaining component of Rn is∣∣∣∣∣∣ 1

mnρn

∑
σ∈Nmn

WσG
∗
σ,τ

{
D∗σ13,τ

f̄2
vx,σ13

f̃vx,σ13 f̃x,σ13 −
D∗σ14,τ

f̄2
vx,σ14

f̃vx,σ14 f̃x,σ14 −
D∗σ23,τ

f̄2
vx,σ23

f̃vx,σ23 f̃x,σ23 +
D∗σ24,τ

f̄2
vx,σ24

f̃vx,σ24 f̃x,σ24

}∣∣∣∣∣∣
≤B−2

vx sup
(v12,x12)∈Svx

| f̂vx,12 − fvx,12 | sup
x12∈Sx

| f̂x,12 − fx,12 |

 1

mnρn

∑
σ∈Nmn

WσG
∗
σ,τ


=Op(1)

(
sup

(v12,x12)∈Svx
| f̂vx,12 − fvx,12 |

)(
sup
x12∈Sx

| f̂x,12 − fx,12 |
)
.

=Op (α1,nα2,n) .

The result follows from the uniform rates of convergence in Lemma 2.

Lemma 8 (First-stage Estimator). Let φ = φ ({i, j, k, l, s, p}) denotes the 6-tuples in Nn. The set

of all 6-tuples is denoted by NMn where Mn =
(
n
6

)−1
. The following representation as U -statistics

A-9



of order 6 holds.

Υ1,nτ =
1

Mnρn

∑
φ∈Nmn

ψx,φnτ + op(1)

Υ2,nτ =
1

Mnρn

∑
φ∈Nmn

ψvx,φnτ + op(1)

where

ψx,φnτ = Wφ

{(
D∗φ13,τ
fx,φ13

Kxh,φ56(xφ13)−
D∗φ14,τ
fx,φ14

Kxh,φ56(xφ14)

)
−
(
D∗φ23,τ
fx,φ23

Kxh,φ56(xφ23)−
D∗φ24,τ
fx,φ24

Kxh,φ56(xφ24)

)}
and

ψvx,φnτ = Wφ

{(
D∗φ13,τ
fvx,φ13

Kvh,φ56(vφ13 , xφ13)−
D∗φ14,τ
fvx,φ14

Kvxh,φ56(vφ14 , xφ14)

)
−
(
D∗φ23,τ
fvx,φ23

Kvxh,φ56(vφ23 , xφ23)−
D∗φ24,τ
fvx,φ24

Kvxh,φ56(vφ24 , xφ24)

)}
.

The following notation is used for the kernel

Kxh,φi1j2
(xφi1i2 ) = Kxh,φi1j2

(xφi1i2 )− E
[
Kxh,φi1j2

(xφi1i2 )
]

Kvxh,φi1j2
(vφi1i2 , xφi1i2 ) = Kvxh,φi1j2

(xφi1i2 , xφi1i2 )− E
[
Kvxh,φi1j2

(vφi1i2 , xφi1i2 )
]
.

Proof. We show the result for Υ1,nτ . Given σ({i, j, k, l}) ∈ N , let σi1i2 ∈ {(i, k), (i, l), (j, k), (j, l)},
we consider instead

f̂x(xσi1i2 )− fx(xσi1i2 ) =
1

(n− 5)(n− 6)

∑
s,p 6=σ

(
Kxh,sp(xσi1i2 )− E

[
Kxh,sp(xσi1i2 )

])
+ o(nδ)

As in the proof of Lemma 7, notice that Υ1,nτ =
(
H̃x,σ13 − H̃x,σ14

)
−
(
H̃x,σ23 − H̃x,σ24

)
, with

H̃x,σi1i2
=

1

mnρn

∑
σ∈Nmn

Wσ

D∗σi1i2 ,τ

fx,σi1i2

(
f̂x,σi1i2 − fx,σi1i2

)
=

1

Mnρn

∑
φ∈NMn

Wφ

D∗φi1i2 ,τ

fx,φi1i2

{
Kxh,φi5i6

(xφi1i2 )− E
[
Kxh,φi5i6

(xφi1i2 )
]}

+ op(n
δ)

since

1

mn(n− 5)(n− 5)ρn

∑
σ∈Nmn

∑
s,p 6=σ

Wσ

D∗σi1i2 ,τ

fx,σi1i2

{
E
[
Kxh,sp(xσi1i2 )

]
− fx,σi1i2

}
= op(n

δ)
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and the fact that the difference between a U−statistics and V -statistics is asymptotically negligible,

see e.g., Newey and McFadden (1994) Chapter 8.2 and Serfling (2009) Chapter 5.7.3. Hence

Υ1,nτ =
1

Mnρn

∑
φ∈NMn

Wφ

{(
D∗φ13,τ
fx,φ13

Kxh,φ56(xφ13)−
D∗φ14,τ
fx,φ14

Kxh,φ56(xφ14)

)

−
(
D∗φ23,τ
fx,φ23

Kxh,φ56(xφ23)−
D∗φ24,τ
fx,φ24

Kxh,φ56(xφ24)

)}
+ op(n

δ).

where φ is defined as a function that maps the 6-tuples to the index set NMn = {1, · · · ,Mn} where

Mn =
(
n
6

)
denotes the total number of 6-tuples with distinct indices i, j, k, l, s, p ∈ Nn in a network

of size n.

The result for Υ2,nτ follows from using

f̂vx(vσi1i2 , xσi1i2 )− fvx(vσi1i2 , xσi1i2 ) =
1

(n− 5)(n− 6)

∑
s,p 6=σ

Kvxh,sp(vσi1i2 , xσi1i2 ) + op(n
δ).

Lemma 9 (U-statistic). The estimator

1

ρn
Ψ̂n,τ

can be represented as a sixth-order U -statistic. That is

1

ρn
Ψ̂n,τ =

1

Mnρn

∑
φ∈NMn

ψφnτ + op(1),

where ψφnτ = ψ0,φnτ + ψx,φnτ − ψvx,φnτ , ψ0,φnτ = WφG
∗
φ,τ , and Mn =

(
n
6

)
.

Proof. The proof resembles the one of Lemma 8.
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A.3 Consistency

Proof of Theorem 4.1

Proof. The estimator is defined as θ̂n = Γ̂−1
n × Ψ̂n,τ with

Γ̂n =
1

m∗n

∑
σ∈Nmn

WσW
>
σ

Ψ̂n,τ =
1

m∗n

∑
σ∈Nmn

WσĜ
∗
σ,τ .

First, we will show that Γ̂n
p→ Γ0 and Ψ̂n,τ

p→ Ψ0. The result will follow from Assumption 3.4, the

use of the Continuous Mapping Theorem and Slutsky’s Theorem.

Part 1.

Γ̂n,τ − Γ0 =
1

m∗n

∑
σ∈Nmn

WσW
>
σ −

1

E [m∗n]

∑
σ∈Nmn

WσW
>
σ

=

{
E [m∗n]

m∗n
− 1

}
1

E [m∗n]

∑
σ∈Nmn

WσW
>
σ +

1

E [m∗n]

∑
σ∈Nmn

{
WσW

>
σ − E

[
WσW

>
σ

]}
.

We will show that each component converges in probability to zero. Notice that for any ε > 0,

Pr

∣∣∣∣∣∣ 1

mnρn

∑
σ∈Nmn

{
WσW

>
σ − E

[
WσW

>
σ

]}∣∣∣∣∣∣ > ε


≤ 1

ε2 (mnρn)2E

 ∑
σ∈Nmn

WσW
>
σ − E

[
WσW

>
σ

]2
≤ n3

ε2 (mnρn)2

∑
σ∈Nmn

E
[(
WσW

>
σ − E

[
WσW

>
σ

])2
]

= O

 1

nρ2
nmn

∑
σ∈Nmn

Pr [Wσ 6= 0]


= Op

(
1

nρn

)
The first inequality follows from Chebyshev’s inequality. The second inequality follows from

Cauchy-Schwarz inequality and the fact that when σ1 and σ2 have zero overlapping indices we

have that E
[(
Wσ1W

>
σ1 − E

[
Wσ1W

>
σ1

]) (
Wσ2W

>
σ2 − E

[
Wσ2W

>
σ2

])]
= 0. The equality results from
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the identification condition in Eq. (A.1), which ensures that

1

mn

∑
σ∈Nmn

E
[(
WσW

>
σ − E

[
WσW

>
σ

])2
]

= Op (ρn) .

To prove the second result. Notice that 1
E[m∗n]

∑
σ∈Nmn

WσW
>
σ = Op(1) and ρn− m∗n

mn
→ 0, and thus

E[m∗n]
m∗n
− 1→ 0 as n→∞.

Part 2: Consider

Ψ̂n,τ −Ψ0 =
1

m∗n

∑
σ∈Nmn

WσĜ
∗
σ,τ −

1

E [m∗n]

∑
σ∈Nmn

E [WσG
∗
σ]

=

{
E [m∗n]

m∗n
− 1

}
1

E [m∗n]

∑
σ∈Nmn

WσĜ
∗
σ,τ +

1

E [m∗n]

∑
σ∈Nmn

{
WσĜ

∗
σ,τ − E [WσG

∗
σ]
}
.

We will show that each term convergences in probability to zero. To convergence of the first term

follows from similar steps as those in Part 1. Consider the second term in the right-hand side

1

mnρn

∑
σ∈Nmn

{
WσĜ

∗
σ,τ − E [WσG

∗
σ]
}

=
1

mnρn

∑
σ∈Nmn

{
WσĜ

∗
σ,τ − E

[
WσG

∗
σ,τ

]}
(A.7)

+
1

mnρn

∑
σ∈Nmn

{
E
[
WσG

∗
σ,τ

]
− E [WσG

∗
σ]
}

(A.8)

We need to show that (A.7) and (A.8) converge in probability to zero. Lemma 6 ensures that (A.8)

converge in probability to zero. We proceed to show the result for (A.7).

Part 2.1 Lemma 7 ensures that the term given by (A.7) can be written as

1

mnρn

∑
σ∈Nmn

{
WσĜ

∗
σ,τ − E

[
WσG

∗
σ,τ

]}
=

1

mnρn

∑
σ∈Nmn

{
WσG

∗
σ,τ − E

[
WσG

∗
σ,τ

]}
+ Υ1,nτ −Υ2,nτ + op(1).

Moreover, Lemma 5 shows that

1

mnρn

∑
σ∈Nmn

{
WσG

∗
σ,τ − E

[
WσG

∗
σ,τ

]}
= op(1).

The result follows from proving that Υ1,nτ − Υ2,nτ = op(1). We will show that Υ1,nτ = op(1), the
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result for Υ2,nτ follows from analogous steps. Notice that Υ1,nτ is a U -statistic of second-order that

depend on the initial kernel estimators f̂vx,i1i2 . It follows from Lemma 8 that after plugging-in the

kernel estimator f̂vx,i1i2 , Υ1,nτ can be written as the following sixth-order U -statistic

Υ1,nτ =
1

Mnρn

∑
φ∈NMn

Wφ

{(
D∗φ13,τ
fx,φ13

Kxh,φ56(xφ13)−
D∗φ14,τ
fx,φ14

Kxh,φ56(xφ14)

)

−
(
D∗φ23,τ
fx,φ23

Kxh,φ56(xφ23)−
D∗φ24,τ
fx,φ24

Kxh,φ56(xφ24)

)}
+ op(1).

Notice that each element in Υ1,nτ has conditional mean zero as the kernelKxh,φ56(xφ13) ≡ Kxh,φ56(xφ13)−
E
[
Kxh,φ56(xφ13)

]
. For any ε > 0, consider

Pr

∣∣∣∣∣∣ 1

Mnρn

∑
φ∈NMn

Wφ

(
D∗φ13,τ
fx,φ13

)
Kxh,φ56(xφ13)

∣∣∣∣∣∣ > ε


≤ 1

ε2M2
nρ

2
n

E

 ∑
φ∈NMn

Wφ

(
D∗φ13,τ
fx,φ13

)
Kxh,φ56(xφ13)


2

≤ 1

ε2nρnMn

∑
φ∈NMn

E

[
WφW

>
φ

(
D∗φ13,τ
fx,φ13

)2

Kxh,φ56(xφ13)2

]

= O

 1

nρn

∑
φ∈NMn

E

[
WφW

>
φ

(
D∗φ13,τ
fx,φ13

)2

Kxh,φ56(xφ13)2

]
≤ O

(
κxEx

nhdθn

)
the first two inequalities follow from similar steps as those in Part 1. The last inequality follows
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from noticing that

E

[(
D∗φ13,τ
fx,φ13

)2

Kxh,φ56(xφ13)2

]

= E

[
E

[(
D∗φ13,τ
fx,φ13

)2

| xφ13 , xφ56

]
Kxh,φ56(xφ13)2

]

≤ κx
(

1

hdθn

)2 ∫
E

[(
D∗φ13,τ
fx,φ13

)2

| xφ13

]
Kxh,φ56(xφ13)fx,φ56fx,φ13dXφ56dXφ13

= κx

(
1

hdθn

)2 ∫ {
E

[(
D∗φ13,τ
fx,φ13

)2

| xφ13

]
×
∫
Kxh,φ56(xφ13)fx,φ56dXφ56

}
fx,φ13dXφ13

= κx

(
1

hdθn

)∫ {
E

[(
D∗φ13,τ
fx,φ13

)2

| xφ13

]
× fx,φ13

}
fx,φ13dXφ13 + o

(
nδ
)

≤ κxEx
(

1

hdθn

)
where the first inequality uses Assumption 3.1 and the fact that the kernel is bounded by As-

sumptions 4.3. The last equality follows from Assumption 3.1 and the fact that the kernel is a

bias-reducing kernel by by Assumptions 4.3. Therefore

1

Mnρn

∑
φ∈NMn

Wφ

(
D∗φ13,τ
fx,φ13

)
{Kxh,φ56(xφ13)− E [Kxh,φ56(xφ13)]} = op(1). (A.9)

Consequently, Υ1,nτ = op(1). It follows from similar steps that Υ2,nτ = op(1).

A.4 Asymptotic Distribution

Lemma 10. Suppose the assumptions of Theorem 4.2. Let

Ψ̂n,τ (Zn) ≡ 1

mnρn

∑
σ∈Nmn

E
[
WσĜ

∗
σ,τ | Zn

]
Ψ0,τ ≡

1

mnρn

∑
σ∈Nmn

E
[
WσG

∗
σ,τ

]
Then

Ψ̂n,τ (Zn)−Ψ0,τ = op(1)

E
[
Ψ̂n,τ | Zn

]
−Ψ0τ =

1

ρn

(
n

6

)−1 ∑
φ∈NMn

{E [ψφnτ | Zn]− E [ψ0,φτ ]} = op(1)
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Proof. It follows from Lemma 9 that

Ψ̂n,τ (Zn)−Ψ0,τ =
1

ρn

(
n

6

)−1 ∑
φ∈NMn

hφ,τ

where hφ,τ = E [ψφnτ | Zn]− E [ψ0,φτ ]. Let

h̃1,τ (Zi1) = E [ψφnτ | Zi1 ]− E [ψ0,φτ ]

h̃2,τ (Zi1 , Zi2) = E [ψφnτ | Zi1 , Zi2 ]− E [ψ0,φτ ]

...

h̃6,τ (Zi1 , · · · , Zi6) = E [ψφnτ | Zi1 , · · · , Zi6 ]− E [ψ0,φτ ]

and

g1,τ (Zi1) =h̃1,τ (Zi1)

g2,τ (Zi1 , Zi2) =h̃2,τ (Zi1 , Zi2)−
∑

1≤k≤2

g1,τ (Zik)

g3,τ (Zi1 , Zi2 , Zi3) =h̃3,τ (Zi1 , Zi2 , Zi3)−
∑

1≤k1<k2≤3

g2,τ (Zik1 , Zik2 )−
∑

1≤k≤3

g1,τ (Zik)

g6,τ (Zi1 , · · · , Zi6) =h̃6,τ (Zi1 , · · · , Zi6)−
∑

1≤k1<···<k5≤6

g5,τ (Zik1 , · · · , Zik5 )− · · ·−

−
∑

1≤k1<k2≤6

g2,τ (Zik1 , Zik2 )−
∑

1≤k≤6

g1,τ (Zik)

It follows from a Hoeffding decomposition, that Ψ̂n,τ (Zn)−Ψ0,τ can be written as

Ψ̂n,τ (Zn)−Ψ0,τ =
1

ρn

6∑
c=1

(
6

c

)(
n

c

)−1

Scn

with

Scn,τ =
∑

1≤i1<···<ic≤n
gc (Zi1 , · · · , Zic)

where for each c = 1, · · · , 6, Scn,τ are uncorrelated. Thus,

V
(

Ψ̂n,τ (Zn)
)

=
1

ρ2
n

6∑
c=1

(
6

c

)2(n
c

)−2

V (Scn,τ )

A-16



with V (Scn,τ ) = Σ̃cn. Consequently,

V
(

Ψ̂n,τ (Zn)
)

=
1

ρ2
n

{
62

(
n

1

)−1

Σ̃1n + 152

(
n

2

)−1

Σ̃2n + 202

(
n

3

)−1

Σ̃3n + 152

(
n

4

)−1

Σ̃4n + 62

(
n

5

)−1

Σ̃5n +

(
n

6

)−1

Σ̃6n

}

=
1

ρ2
n

{
62

(
n

1

)−1

Σ̃1n + 152

(
n

2

)−1

Σ̃2n + 202

(
n

3

)−1

Σ̃3n + 152

(
n

4

)−1

Σ̃4n + 62

(
n

5

)−1

Σ̃5n +

(
n

6

)−1

Σ̃6n

}

=O

(
1

nρn

)
+ o

(
1

nρn

)
which uses the fact that Σ̃1n = O (ρn).

It follows then that for any ε > 0

Pr
[∣∣∣Ψ̂n,τ (Zn)−Ψ0τ

∣∣∣ > ε
]
≤ 1

ε2
V
(

Ψ̂n,τ (Zn)
)

= O

(
1

nρn

)
which converges in probability to zero as n→∞.

Lemma 11 (Hájek Projection). Suppose the assumptions of Theorem 4.2. Let

Sn,τ ≡
1

mnρn

∑
σ∈Nmn

{
WσĜ

∗
σ,τ − E

[
WσĜ

∗
σ,τ | Zn

]}
.

The, Hájek Projection of Sn,τ into arbitrary functions (Zij , Uij) is given by

Sn,τ =
15

ρn

(
n

2

)−1∑
i<j

ζij,τ + op(1)

where

ζij,τ ≡ E
[
ψ̃φnτ | Zij , Uij

]
and ψ̃φnτ = ψφnτ − E [ψφnτ | Zn].

Proof. It follows from Lemma 9 that Sn,τ can be written as a U -statistic. In particular,

Sn,τ =
1

ρn

{
Ψ̂n,τ − E

[
Ψ̂n,τ | Zn

]}
=

1

ρn

(
n

6

)−1 ∑
φ∈NMn

ψ̃φnτ

where

ψ̃φnτ = ψ̃0,φnτ + ψ̃x,φnτ − ψ̃vx,φnτ
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and ψ̃φnτ = ψφnτ−E [ψφnτ | Zn], ψ̃0,φnτ = ψ0,φnτ−E [ψ0,φnτ | Zn], ψ̃x,φnτ = ψx,φnτ−E [ψx,φnτ | Zn],

ψ̃vx,φnτ = ψvx,φnτ − E [ψvx,φnτ | Zn].

Part 1: Variance of Sn,τ . For any two indices φ1 and φ2, let

Σcn ≡ C
(
ψ̃φ1nτ , ψ̃φ2nτ

)
denote the covariance of ψ̃φ1nτ and ψ̃φ2nτ when the 6-tuples φ1 and φ2 have c = 0, 1, · · · , 6 indices

in common. Notice that Sn,τ has degeneracy of order 1, which is a consequence of Assumption 3.1,

and the conditional mean zero, E [Sn,τ | Zn] = 0. In particular, notice that for any φ1 and φ2 with

c = 0, 1 indices in common

C
(
ψ̃0,φ1nτ , ψ̃0,φ2nτ

)
= 0

C
(
ψ̃x,φ1nτ , ψ̃x,φ2nτ

)
= 0

C
(
ψ̃vx,φ1nτ , ψ̃vx,φ2nτ

)
= 0

C
(
ψ̃0,φ1nτ , ψ̃x,φ2nτ

)
= 0

C
(
ψ̃0,φ1nτ , ψ̃vx,φ2nτ

)
= 0

C
(
ψ̃x,φ1nτ , ψ̃vx,φ2nτ

)
= 0.

Which ensures that, for any φ1 and φ2 the covariances Σ0n = 0 and Σ1n = 0. It follows then that

V (Sn,τ ) =
1

ρ2
n

(
n

6

)−2 ∑
φ1∈NMn

∑
φ2∈NMn

C
(
ψ̃φ1nτ , ψ̃φ2nτ

)

=
1

ρ2
n

(
n

6

)−1 6∑
c=2

(
6

c

)(
n− 6

6− c

)
Σcn

' 1

ρ2
n

{
152

(
n

2

)−1

Σ2n + 202

(
n

3

)−1

Σ3n + 152

(
n

4

)−1

Σ4n + 62

(
n

5

)−1

Σ5n + Σ6n

}
.

Part 2: Hájek Projection. Consider the projection of Sn,τ into an arbitrary set functions of (Zij , Uij).

Let

ζij = E
[
ψ̃φnτ | Zij , Uij

]
.
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Hence

E [Sn,τ | Zij , Uij ] =
1

ρn

(
n

6

)−1 ∑
φ∈NMn

E
[
ψ̃φnτ | Zij , Uij

]
=

1

ρn

(
n

6

)−1(n− 2

4

)
E
[
ψ̃φnτ | Zij , Uij

]
=

15

ρn

(
n

2

)−1

ζij .

The Hájek Projection of Sn,τ is given by

S∗n,τ =
15

ρn

(
n

2

)−1∑
i<j

ζij .

Part 3: Variance of S∗n,τ . The variance of the Hájek Projection is

Ωn ≡ V
(
S∗n,τ

)
=

(
15

ρn

)2(n
2

)−2∑
i<j

V (ζij)

=

(
15

ρn

)2(n
2

)−1

V (ζij)

where V (ζij) = E
[
ζijζ

>
ij

]
.

Part 4: Asymptotic Equivalence. The asymptotic equivalence between Sn,τ and S∗n,τ follows from

showing that

Ω−1/2
n E

[(
Sn,τ − S∗n,τ

)2]
Ω−1/2
n = op(1).

Part 1 of the proof shows that the leading term of the variance of Sn,τ is of order O
(

Σ2n
(nρn)2

)
. The

number of terms with more than one of dyad in common is o
(
(nρn)2

)
. That is

V (Sn,τ ) '

{(
15

ρn

)2(n
2

)−1

Σ2n

}
+ o

(
(nρn)2

)
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where

Σ2n = C
(
ψ̃φ1nτ , ψ̃φ2nτ

)
= E

[
E
[
ψ̃φ1nτ

(
ψ̃φ2nτ

)>
| Zij , Uij

]]
= E

[
ζijζ

>
ij

]
= V (ζij)

where the third equality follows from the fact that φ1 and φ2 with 2 indices in common, denoted

by i, j, the arrays φ1 and φ2 are conditionally independent by Assumption 3.1. Next, notice that

C
(
Sn,τ ,S∗n,τ

)
= E

[
Sn,τ

(
S∗n,τ

)>]
= E

[{
Sn,τ − S∗n,τ

} (
S∗n,τ

)>]
+ E

[
S∗n,τ

(
S∗n,τ

)>]
= V

(
S∗n,τ

)
where E

[{
Sn,τ − S∗n,τ

} (
S∗n,τ

)>]
= 0 by definition of a projection. It follows then that

Ω−1/2
n E

[(
Sn,τ − S∗n,τ

)2]
Ω−1/2
n = Ω−1/2

n

{
V (Sn,τ ) + V

(
S∗n,τ

)
− 2C

(
Sn,τ ,S∗n,τ

)}
Ω−1/2
n

= Ω−1/2
n

{
V (Sn,τ )− V

(
S∗n,τ

)}
Ω−1/2
n

→ 0

as n→∞.

Proof of Theorem 4.2

Proof. Consider

θ̂n − θ0 = Γ̂−1
n × Ψ̂n,τ − Γ−1

0 ×Ψ0

= Γ̂−1
n ×

(
Ψ̂n,τ −Ψ0

)
+
(

Γ̂−1
n − Γ−1

0

)
Ψ0

= Γ−1
0 ×

(
Ψ̂n,τ −Ψ0

)
+ op(1)
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where Γ̂−1
n − Γ−1

0 = op(1) was established in the proof of Theorem 4.1. The proof follows from

establishing the asymptotic distribution of Ψ̂n,τ −Ψ0. Consider, the decomposition

Ψ̂n,τ −Ψ0 =

{
E [m∗n]

m∗n
− 1

}
1

mnρn

∑
σ∈Nmn

WσĜ
∗
σ,τ +

1

mnρn

∑
σ∈Nmn

{
WσĜ

∗
σ,τ − E

[
WσG

∗
σ,τ

]}
− 1

mnρn

∑
σ∈Nmn

{
E
[
WσG

∗
σ,τ

]
− E [WσG

∗
σ]
}

It follows from Theorem 4.1 that first term in the right-hand side of the equality convergences in

probability to zero. Moreover, it follows from Lemma 6 that the trimming effect is asymptotically

negligible, and thus the third term in the right-hand side of the equality also convergences in

probability to zero. That is

1

mnρn

∑
σ∈Nmn

{
E
[
WσG

∗
σ,τ

]
− E [WσG

∗
σ]
}

= op(1).

Notice that the second term can be decomposed as

1

mnρn

∑
σ∈Nmn

{
WσĜ

∗
σ,τ − E

[
WσG

∗
σ,τ

]}
=

1

mnρn

∑
σ∈Nmn

{
WσĜ

∗
σ,τ − E

[
WσĜ

∗
σ,τ | Zn

]}
+

1

mnρn

∑
σ∈Nmn

{
E
[
WσĜ

∗
σ,τ | Zn

]
− E

[
WσG

∗
σ,τ

]}
.

Lemma 10 ensures that

1

mnρn

∑
σ∈Nmn

{
E
[
WσĜ

∗
σ,τ | Zn

]
− E

[
WσG

∗
σ,τ

]}
= op(1),

while Lemma 11 shows that Hájek projection of the first term on the right-hand side is

1

mnρn

∑
σ∈Nmn

{
WσĜ

∗
σ,τ − E

[
WσĜ

∗
σ,τ | Zn

]}
=

15

ρn

(
n

2

)−1∑
i<j

ζij,τ + op

(
1/
√
n(n− 1)ρn

)
with the score given by

ζij ≡ E
[
ψ̃φnτ | Zij , Uij

]
.

Notice that conditional on Zn, the components of the Hájek Projection are conditionally indepen-

dent of each other with mean zero. Moreover, it follows from the proof of Theorem that

E
[
ζijζ

>
ij

]
= O (ρn)
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and thus

V
(
S∗n,τ

)
=

(
15

ρn

)2(n
2

)−1

V (ζij) = O

(
1

n(n− 1)ρn

)
.

which ensures that Ω̃ = n(n− 1)ρnV
(
S∗n,τ

)
= O (1). Consequently,

Ψ̂n,τ −Ψ0 =
15

ρn

(
n

2

)−1∑
i<j

ζij,τ + op

(
1/
√
n(n− 1)ρn

)
As established in Graham (2017), the conditional independence structure of the terms in the Hájek

Projection ensures that the following convergence in distribution holds

Ω̂−1/2
n


(
n

2

)−1∑
i<j

ζij,τ

 N (0, I)

with

Ω̂n =

(
n

2

)−1∑
i<j

ζij,τζ
>
ij,τ .

Let Vn = Γ̂−1
n Ω̂nΓ̂−1

n , it follows from Slutsky’s Theorem that

V−1/2
n

(
θ̂n − θ0

)
 N

(
0, 152I

)
.
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B Additional Monte Carlo Simulations

DGP 1: vij ∼ N (0, 1.5) and Uij ∼ Beta(2, 2)− 1
2

Table B1: Simulation results for the semiparametric estimator θ̂n and the Tetrad Logit

θ̂n Tetrad Logit

mean median std MSE mean median std MSE Degree

n = 100
log(log(n)) 1.5182 1.5159 0.4277 0.1832 1.6244 1.6377 0.2933 0.1015 0.3982

log(n)1/2 1.5379 1.5102 0.4653 0.2179 1.6388 1.6459 0.3017 0.1103 0.3511
log(n) 1.5440 1.5481 0.6179 0.3837 1.6580 1.6595 0.3507 0.1479 0.2391

n1/3 1.5135 1.5256 0.6459 0.4174 1.6341 1.6383 0.3516 0.1416 0.2377
n = 200

log(log(n)) 1.5307 1.5233 0.2133 0.0465 1.6413 1.6429 0.1402 0.0396 0.3916

log(n)1/2 1.5280 1.5174 0.2318 0.0545 1.6379 1.6427 0.1458 0.0403 0.3348
log(n) 1.5276 1.5334 0.3263 0.1072 1.6373 1.6347 0.1839 0.0527 0.2135

n1/3 1.5150 1.5165 0.3517 0.1239 1.6433 1.6445 0.1770 0.0519 0.1953

1 Total number of Monte Carlo simulations = 1000.
2 Bandwidth parameter h = 0.05.

Table B2: Simulation results for the semiparametric estimator θ̂n and the Tetrad Logit

θ̂n Tetrad Logit

mean median std MSE mean median std MSE Degree

n = 100
log(log(n)) 1.5191 1.5185 0.4183 0.1754 1.6334 1.6453 0.2890 0.1013 0.3979

log(n)1/2 1.5342 1.5322 0.4484 0.2022 1.6231 1.6276 0.2950 0.1022 0.3525
log(n) 1.5015 1.5099 0.6342 0.4022 1.6241 1.6350 0.3517 0.1391 0.2395

n1/3 1.5226 1.4816 0.6347 0.4034 1.6100 1.5966 0.3513 0.1355 0.2386
n = 200

log(log(n)) 1.5307 1.5233 0.2133 0.0465 1.6413 1.6429 0.1402 0.0396 0.3916

log(n)1/2 1.5280 1.5174 0.2318 0.0545 1.6379 1.6427 0.1458 0.0403 0.3348
log(n) 1.5276 1.5334 0.3263 0.1072 1.6373 1.6347 0.1839 0.0527 0.2135

n1/3 1.5150 1.5165 0.3517 0.1239 1.6433 1.6445 0.1770 0.0519 0.1953

1 Total number of Monte Carlo simulations = 1000.
2 Bandwidth parameter h = 0.1.
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Table B3: Simulation results for the semiparametric estimator θ̂n and the Tetrad Logit

θ̂n Tetrad Logit

mean median std MSE mean median std MSE Degree

n = 100
log(log(n)) 1.5564 1.5642 0.4289 0.1871 1.6288 1.6232 0.2954 0.1039 0.3986

log(n)1/2 1.5544 1.5502 0.4592 0.2139 1.6272 1.6308 0.3181 0.1174 0.3524
log(n) 1.5468 1.5495 0.6127 0.3777 1.6407 1.6357 0.3410 0.1361 0.2392

n1/3 1.5532 1.5695 0.6255 0.3940 1.6371 1.6416 0.3586 0.1474 0.2367
n = 200

log(log(n)) 1.5324 1.5347 0.2152 0.0474 1.6337 1.6336 0.1384 0.0370 0.3923

log(n)1/2 1.5371 1.5462 0.2437 0.0608 1.6346 1.6348 0.1479 0.0400 0.3354
log(n) 1.5412 1.5490 0.3325 0.1122 1.6398 1.6362 0.1753 0.0503 0.2141

n1/3 1.4892 1.5025 0.3580 0.1283 1.6392 1.6321 0.1848 0.0535 0.1952

1 Total number of Monte Carlo simulations = 1000.
2 Bandwidth parameter h = 0.2.

DGP 2: vij ∼ Logistic(0, 1.5) and Uij ∼ Logistic(0, 1)

Table B4: Simulation results for the semiparametric estimator θ̂n and the Tetrad Logit

θ̂n Tetrad Logit

mean median std MSE mean median std MSE Degree

n = 100
log(log(n)) 1.4742 1.4654 1.1009 1.2126 1.3753 1.3579 0.8840 0.7970 0.4457

log(n)1/2 1.4500 1.4454 1.1031 1.2194 1.3410 1.3640 0.9142 0.8611 0.4218
log(n) 1.4624 1.4202 1.2157 1.4793 1.3664 1.3542 0.9406 0.9026 0.3523

n1/3 1.4649 1.4396 1.1548 1.3348 1.3311 1.2840 0.8938 0.8274 0.3512
n = 200

log(log(n)) 1.5018 1.4898 0.5265 0.2772 1.3916 1.3840 0.4226 0.1904 0.4435

log(n)1/2 1.4961 1.5007 0.5208 0.2712 1.3849 1.3756 0.4175 0.1875 0.4125
log(n) 1.4827 1.4826 0.5685 0.3235 1.3956 1.4010 0.4393 0.2039 0.3352

n1/3 1.4559 1.4441 0.5951 0.3561 1.3996 1.4107 0.4657 0.2270 0.3196

1 Total number of Monte Carlo simulations = 1000.
2 Bandwidth parameter h = 0.05.
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Table B5: Simulation results for the semiparametric estimator θ̂n and the Tetrad Logit

θ̂n Tetrad Logit

mean median std MSE mean median std MSE Degree

n = 100
log(log(n)) 1.4860 1.4265 1.0722 1.1498 1.4018 1.4011 0.8405 0.7160 0.4457

log(n)1/2 1.4752 1.5015 1.1167 1.2476 1.3495 1.3304 0.9070 0.8452 0.4211
log(n) 1.4880 1.4876 1.1675 1.3631 1.3718 1.4099 0.9220 0.8665 0.3521

n1/3 1.5122 1.5241 1.1744 1.3794 1.3996 1.4208 0.9477 0.9083 0.3514
n = 200

log(log(n)) 1.4739 1.4934 0.5116 0.2624 1.3705 1.3710 0.4132 0.1875 0.4435

log(n)1/2 1.4976 1.4802 0.5365 0.2878 1.4006 1.4015 0.4349 0.1991 0.4126
log(n) 1.4764 1.4516 0.5635 0.3181 1.3895 1.3936 0.4495 0.2143 0.3348

n1/3 1.4775 1.4853 0.6088 0.3711 1.4052 1.4109 0.4795 0.2389 0.3195

1 Total number of Monte Carlo simulations = 1000.
2 Bandwidth parameter h = 0.1.

Table B6: Simulation results for the semiparametric estimator θ̂n and the Tetrad Logit

θ̂n Tetrad Logit

mean median std MSE mean median std MSE Degree

n = 100
log(log(n)) 1.4585 1.4583 1.0656 1.1372 1.3725 1.3539 0.8818 0.7939 0.4457

log(n)1/2 1.5320 1.5240 1.0826 1.1731 1.4074 1.3894 0.8846 0.7911 0.4217
log(n) 1.5087 1.5273 1.1567 1.3381 1.3775 1.3477 0.9560 0.9290 0.3519

n1/3 1.4617 1.4946 1.1640 1.3563 1.3747 1.3705 0.9125 0.8483 0.3511
n = 200

log(log(n)) 1.4987 1.4924 0.5117 0.2618 1.3860 1.3914 0.4129 0.1835 0.4436

log(n)1/2 1.5044 1.5113 0.5216 0.2720 1.4089 1.4358 0.4167 0.1820 0.4123
log(n) 1.4709 1.4455 0.5713 0.3272 1.3861 1.3803 0.4582 0.2229 0.3350

n1/3 1.4530 1.4549 0.5906 0.3510 1.3999 1.3890 0.4539 0.2160 0.3197

1 Total number of Monte Carlo simulations = 1000.
2 Bandwidth parameter h = 0.2.
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C Random Utility Model with Transferable Utilities

The network formation model described in Equation 1 can be obtained as a stable outcome of a

random utility model with transferable utilities. For instance, let ūij(Zij , Aj , Uij) denote individual

i’s latent valuation of establishing a link with j given their shared observed attributes Zij , agent j′s

unobserved type Aj , and their common unobserved factor Uij . It follows that the joint net benefit

of adding the link {i, j} to the network Dn is

ūij(Zij , Aj , Uij) + ūji(Zij , Ai, Uij) = Z ′ijβ0 +Ai +Aj − Uij . (C.1)

Notice that the joint net benefit accounts for the preferences based on the observed attributes

Zij , as well as on the agent-specific characteristics Ai +Aj , and the exogenous factors affecting the

decision to establish a link Uij . Moreover, Equation C.1 implies that two distinct individuals i and

j in Nn only have utility valuations for their own observed and unobserved attributes. In other

words, the (i, j)th linking decision does not depend on the attributes of other individuals k ∈ Nn

with k 6= i, j, as well as on the structure of the network Dn, which would give rise to network

externalities.

Next, I introduce the definition of stability.

Definition 1 (Stability). A network Dn is stable with transfers if for any distinct i, j ∈ Nn:

1. Dij = 1 only if ūij(Zij , Aj , Uij) + ūji(Zij , Ai, Uij) ≥ 0; and

2. Dij = 0 only if ūij(Zij , Aj , Uij) + ūji(Zij , Ai, Uij) < 0.

Notice that this definition adapts the pairwise stability in Jackson and Wolinsky (1996) to

allow for transferable utilities. Intuitively, this condition states that a link within dyad {i, j} is

established if the net benefit of that connection is nonnegative.
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D Data Description

D.1 Data References

This research uses data from Add Health, a program project directed by Kathleen Mullan Harris

and designed by J. Richard Udry, Peter S. Bearman, and Kathleen Mullan Harris at the University

of North Carolina at Chapel Hill, and funded by grant P01-HD31921 from the Eunice Kennedy

Shriver National Institute of Child Health and Human Development, with cooperative funding from

23 other federal agencies and foundations. Special acknowledgment is due Ronald R. Rindfuss and

Barbara Entwisle for assistance in the original design. Information on how to obtain the Add

Health data files is available on the Add Health website (www.cpc.unc.edu/projects/addhealth).

No direct support was received from grant P01-HD31921 for this analysis.

D.2 Add Health sample

The Add Health dataset is a nationally representative survey of adolescents in grades 7-12 in

the United States during the 1994-1995 school year. It has been designed to study the impact

of the social environment, such as participants’ schools, neighborhoods, friends and families, on

adolescents’ behavior. It is is a longitudinal survey collected in five waves of in-school and in-home

interviews, and linked to school administrative data.D.1

I use data from the Wave 1 in-home survey, which contains information on a total of 20,745

students, including their self-reported friendship connections. The in-home survey is more suitable

for this analysis than the in-school survey as it also includes information on students’ health in

the early years of life, their parents and households, such as parents’ health-related behavior,

marriage relationships, and household income. Below, I discuss in detail the attributes used for

this analysis.D.2

In 16 out of the total 145 high schools in the sample, known as saturated schools, all the

students were selected for in-home interviews regardless of whether they had completed an in-

school questionnaire.D.3 In these interviews, the students were asked to name up to five male

and five female students.D.4 The saturated high schools include two large schools and 14 smaller

schools with a total of 3,702 enrolled students. The two larger schools were selected deliberately

to represent student populations with opposite ethnic compositions. One is predominantly white

D.1The Add Health website describes the data in detail, www.cpc.unc.edu/projects/addhealth.
D.2I matched the in-home survey data with the school administrative data to input for missing observations, which

yields a sample of 20,369 matched participants.
D.3The code books Adolescent In-Home Questionnaire and School Information provide more information on the

definition of saturated schools.
D.4In all the remaining schools, most of the students were allowed to nominate only one male and one female friend.

In fact, the average and median share of students across high schools that were allowed to list up to five male and
five female friends in non-saturated schools are 22% and 13%, respectively. Meanwhile, in saturated schools, these
figures reached 84% and 94%, respectively.
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and is located in a small town; the other is characterized by a large ethnic heterogeneity and is

located in a major metropolitan area. The remaining 14 schools are drawn to represent both rural

and urban areas and are similar in terms of the number of enrolled students.

In my analysis, I focus on saturated schools since their design allows me to recover the complete

friendship network for all the students enrolled in these schools. Moreover, to avoid inducing any

bias due to oversampled ethnic groups, I select a representative sample of four high schools among

the 14 smaller saturated schools.D.5 These four high schools are the largest in each stratification

region (West, Midwest, South, and Northeast). Table D3 provides evidence suggesting that, for

the majority of the covariates used in the analysis, the selected sample is representative of the pop-

ulation of students enrolled in the remaining saturated high schools.D.6 The final sample includes

273 students, after dropping missing observations.

D.3 Observed Attributes

In this section, I describe the covariates included in the estimation of the network formation model

given by Equation 1. The covariates are classified in the following five categories:

1. Socio-demographic attributes:

• Age is a discrete variable that indicates the student’s age.

• Gender is a binary variable that takes the value of 1 if the student is a female and 0 otherwise.

• White ethnicity is a binary variable takes the value of 1 if the student is of white ethnicity

and 0 otherwise.

• Religion is a variable that describes the student’s religion.

In this sample, the average age of the students is 15 years old and the shares of female and white

students are 57% and 85%, respectively. From the 28 different religious beliefs recorded in the Add

Health dataset, 21% of students reported to be Baptist, 15% Methodist, 14% Catholic, 14% Disci-

ples of Christ, and 14% Atheist. The remaining students follow other protestant denominations.

2. Educational factors:

• Grade is a variable that indicates the current academic grade of the student and ranges from

7th to 12th grade.

• Overall GPA represents the student’s average GPA across English, History, Mathematics,

and Science courses.

D.5Notice that this setting is consistent with the sampling framework described in Section 4.
D.6Naturally, the empirical analysis can be conducted by aggregating the information across the 14 saturated high

schools without modifying the theoretical framework, but at a higher computational cost.
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• Clubs is an index that records the number of artistic, educational, language or sports clubs

that the student attends. This index takes a value from 0 to 4, where 0 to 3 correspond to

the actual number of clubs that the student attends, and 4 indicates that this number is 4 or

more.

• Repeated Grade is a dummy variable that takes the value of 1 if the student has ever repeated

an academic grade and 0 otherwise.

• College Expectations is a categorical variable indicating on a scale of 1 to 5, where 1 is

low and 5 is high, to what extent students want to go to college.

On average, students in this network have a 2.9 GPA, are members of approximately 2 clubs, and

have strong college aspirations. The share of students that has repeated an academic grade is 18%.

3. Economic factors:

• Mother Highly Educated is a dummy variable that indicates whether or not the student’s

mother has attended at least some years of college.

• Mother Works is a binary variable that takes the value of 1 if the student’s mother participates

in the labour market.

• Log Household income is the logarithm value of the total household income before taxes in

1994, expressed as deviations from the median value.

• Divorced Parents is a dummy variable that takes the value of 1 if the students’ parents are

divorced or separated.

• Number of Siblings is a categorical variable that indicates the student’s number of siblings.

This variable takes a value from 0 to 5, where 5 corresponds to five siblings or more.

• Birth Order is a variable that records the order in which the student was born in her family.

This covariate takes values from 1 to 5, where 5 denotes the fifth children or lower in the

ranking.

• Good neighborhood is a binary variable that indicates whether or not the student’s family

signalled their current neighborhood as having lower crime and drug use relative to other

neighborhoods, as well as better schools.

On average, 41% of the students’ mothers in this sample have attended college and 78% do paid

work. Moreover, the students have on average two siblings and they are the second child.

4. Physical and health-related factors:

• Depressed is a categorical variable that indicates how often a student felt depressed during

the previous week. It takes a value from 0 to 3, where 0 represents never or rarely, and 3

represents all the time.
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• Attractiveness is variable that scores the student’s level of attractiveness according to the

interviewer. It takes values on a scale from −2 to 2, where −2 is very unattractive and 2 is

very attractive.

• S&D habits is a dummy variable that takes the value of 1 if the student either smokes or

drinks regularly.D.7

• Friends’ S&D habits records the number of friends out of the student’s three best friends

that drink or smoke regularly.

• Mother’s Health is a categorical variable that indicates the mother’s general health on a

scale from 0 to 5, where 0 is poor, and 5 is excellent.

5. Early childhood conditions

• Breastfed is a dummy variable that takes the value of 1 if the student was breastfed at birth

for a period of at least three months, and 0 otherwise.

• Intellectual or Physical Disability is a binary variable that captures whether or not

the student is intellectually or physically disabled since birth, for example as having a learning

disability.

• Mother’s Age at Birth is variable that records the age at which the mother gave birth to

the student.

• Mother Health Risk Factors is a binary variable that takes the value of 1 if the mother

suffers from alcoholism, diabetes, or overweight, and 0 otherwise.

The descriptive statistics of the observed covariates are summarized in Table D1 at individual

level and in Table D2 at a dyad level.

Now, I explain the motivation for using this set of attributes. The rationale for including

socio-demographic attributes is to account for homophily on age, gender, race, and religion. Mean-

while, the educational factors considered are likely to be affected by students’ birth weight and

capture homophily patterns in friendship connections across extracurricular activities, academic

performance, and aspirations (see e.g., Almond and Currie 2011; Figlio et al. 2014). Similarly, the

economic factors are likely to affect students’ birth weight and individual personality traits (see

e.g., Aizer and Currie 2014; Almond et al. 2018). Also, they capture assortative matching based on

economic factors. For example, high-skilled mothers might help to raise more gregarious students,

while disruptions in the household might damper the student’s social skills.

The physical and health-related factors are likely to be related to the students’ birth weight but

also contribute to shaping their individual characteristics and affect the probability of establishing

D.7Smoking and drinking regularly is defined as smoking at least 1 cigarette ever day for the past 30 days and
drinking alcohol at least 3 days a week during the last 12 months.
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friendship connections (see e.g., Del Bono et al. 2012; Brunello and Schlotter 2011). For example,

the tendency to be depressed may hamper students’ ability to engage in social interactions. In

contrast, common social interests, such as individual and friends’ smoking and drinking habits,

may increase it. Finally, the attributes accounting for early childhood conditions may contribute

to building up a stronger immune system, as well as influence the actual realization of students’

birth weight and affect the development of students’ individual traits (see e.g., Aizer and Currie

2014; Fitzsimons and Vera-Hernández 2015; Maruyama and Heinesen 2020).
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Table D1: Descriptive statistics

mean median std min max

network degree 2.894 3.000 2.188 0.000 10.000
age 15.582 16.000 1.708 13.000 20.000
gender 0.531 1.000 0.499 0.000 1.000
white 0.853 1.000 0.354 0.000 1.000
grade 9.206 9.000 1.658 7.000 12.000
overall GPA 2.922 3.000 0.811 0.000 4.000
clubs 1.982 2.000 1.609 0.000 4.000
repeated grade 0.187 0.000 0.390 0.000 1.000
depressed 0.421 0.000 0.686 0.000 3.000
number of siblings 2.359 2.000 1.053 0.000 5.000
order of siblings 1.593 1.000 0.833 1.000 4.000
mother highly educated 0.414 0.000 0.493 0.000 1.000
mother works 0.788 1.000 0.409 0.000 1.000
S&D habits 0.209 0.000 0.406 0.000 1.000
friends’ S&D habits 0.978 1.000 1.135 0.000 3.000
good neighborhood 0.648 1.000 0.477 0.000 1.000
religion 10.205 5.000 8.118 0.000 28.000
college expectations 4.491 5.000 0.926 1.000 5.000
attractiveness 0.531 0.000 0.770 -2.000 2.000
mother’s health 3.681 4.000 0.993 0.000 5.000
divorced parents 0.289 0.000 0.453 0.000 1.000
breastfed 0.352 0.000 0.477 0.000 1.000
disability 0.103 0.000 0.303 0.000 1.000
mother’s age at birth 25.029 24.000 5.166 14.000 46.000
mother’s health risks factors 0.308 0.000 0.462 0.000 1.000
log household income 3.597 3.638 0.649 1.099 5.451
birth weight 0.000 -64.881 530.349 -1566.901 1975.599

Sample size n = 273
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Table D2: Descriptive statistics at a dyad level

mean median std min max

network degree 2.894 3.000 2.188 0.000 10.000
age 0.161 0.000 6.076 0.000 1.000
gender 0.502 1.000 8.261 0.000 1.000
white 0.728 1.000 7.349 0.000 1.000
grade 0.171 0.000 6.220 0.000 1.000
overall GPA 8.539 8.250 56.449 0.000 16.000
clubs 3.927 0.000 85.922 0.000 16.000
repeated grade 0.035 0.000 3.032 0.000 1.000
depressed 0.177 0.000 10.303 0.000 9.000
number of siblings 5.565 4.000 60.878 0.000 25.000
order of siblings 2.539 2.000 33.109 1.000 16.000
mother highly educated 0.171 0.000 6.226 0.000 1.000
mother works 0.620 1.000 8.019 0.000 1.000
S&D habits 0.670 1.000 7.772 0.000 1.000
friends’ S&D habits 0.957 0.000 33.566 0.000 9.000
good neighborhood 0.420 0.000 8.156 0.000 1.000
religion 0.140 0.000 5.728 0.000 1.000
college expectations 20.168 20.000 98.227 1.000 25.000
attractiveness 0.282 0.000 13.693 -4.000 4.000
mother’s health 13.552 12.000 86.972 0.000 25.000
divorced parents 0.084 0.000 4.577 0.000 1.000
breastfed 0.124 0.000 5.439 0.000 1.000
disability 0.011 0.000 1.686 0.000 1.000
mother’s age at birth 0.059 0.000 3.896 0.000 1.000
mother’s health risks factors 0.095 0.000 4.837 0.000 1.000
log household income 0.002 0.000 6.996 -4.604 6.446
birth weight 826282.7 664176.9 12185755.3 -1897778.3 8320917.1

Sample size n = 273
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Table D3: Two-sample t-test for equal means

Mean
selected schools

Mean other
saturated schools Differences P-values

age 15.58 15.09 -3.81 0.00
female 0.53 0.51 -0.46 0.64
white 0.85 0.84 -0.49 0.62
grade 9.21 8.69 -4.20 0.00
overall GPA 2.92 2.85 -1.07 0.28
clubs 1.98 1.74 -2.05 0.04
repeated grade 0.19 0.15 -1.40 0.16
depressed 0.42 0.35 -1.40 0.16
number of siblings 2.36 2.42 0.77 0.44
order of siblings 1.37 1.63 2.96 0.00
mother highly educated 0.41 0.40 -0.51 0.61
mother works 0.79 0.79 0.01 0.99
S&D habits 0.21 0.18 -1.01 0.31
friends’ S&D habits 0.98 0.85 -1.52 0.13
good neighborhood 0.65 0.77 3.67 0.00
religion 10.21 11.08 1.37 0.17
college expectations 4.49 4.38 -1.27 0.20
attractiveness 0.53 0.69 2.68 0.01
mother’s health 3.68 3.76 1.02 0.31
divorced parents 0.29 0.29 -0.07 0.94
breastfed 0.35 0.27 -2.35 0.02
disability 0.10 0.16 2.27 0.02
mother’s age at birth 25.03 27.57 0.95 0.34
mother’s health risk factors 0.31 0.19 -3.88 0.00
log household income 3.60 3.57 -0.47 0.64
birth weight 3,409.00 3,386.25 -0.52 0.60
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